Answer:
Explanation:
Positive values for position indicate that the object is in front of the starting point and negative values tell us that the object is behind the starting point. (time = 9.5, position = 0) the object is at the starting point.
Answer:
<em>The power generated is = 5.33×10⁸ Watt. </em>
Explanation:
Power: Power can be defined as the time rate of doing work. The S.I unit of power is <em>Watt(W).</em>
<em>Mathematically,</em>
<em>Power (P) = Work done/time or Energy/time</em>
P = mgh/t............................... Equation 1
P = δgh............................. Equation 2
Where δ = fall rate, g = acceleration due to gravity, h = height.
<em>Given: </em>δ = 1.1×10⁶ kg/s, h = 49.4 m g = 9.81 m/s²
Substituting these values into equation 2
P = 1.1×10⁶×49.4×9.81
P = 533.08×10⁶
<em>P = 5.33×10⁸ Watt.</em>
<em>Thus the power generated is = 5.33×10⁸ Watt. </em>
When you first pull back on the pendulum, and when you pull it back really high the Potential Energy is high and the Kinetic Energy is low, But when up let go, and it gets right around the middle, that's when the Potential energy transfers to Kinetic, at that point the kinetic Energy is high and the potential Energy is low. But when it comes back up at the end. The same thing will happen, the Potential Energy is high, and the Kinetic Energy is low. Through all of that the Mechanical Energy stays the same.
I hope this helps. :)
Brainliest?
Answer:
A telescope's angular resolution.
Explanation:
Diffraction limit is a minimum angular separation of two sources and it can be distinguished by the telescope. This angle is known as the diffraction limit. It is proportional to the wavelength of light and it has an inverse relation with the diameter of the telescope. Mathematically it is defined as
θ = 1.22λ/d
where θ is the angle, λ wavelength and d is the diameter of the objective mirror (lenz).
Any process in which a mixture of materials separates out partially