Answer:
Ksp = 8.8x10⁻⁵
Explanation:
<em>Full question is:</em>
<em>After mixing an excess PbCl2 with a fixed amount of water, it is found that the equilibrium concentration of Pb2+ is 2.8 × 10–2 M. What is Ksp for PbCl2?</em>
<em />
When an excess of PbCl₂ is added to water, Pb²⁺ and Cl⁻ ions are produced following Ksp equilibrium:
PbCl₂(s) ⇄ Pb²⁺ + 2Cl⁻
Ksp = [Pb²⁺] [Cl⁻]²
If an excess of PbCl₂ was added, an amount of Pb²⁺ is produced (X) and twice Pb²⁺ is produced as Cl⁻ (2X):
Ksp = [X] [2X]²
Ksp = 4X³
As X is the amount of Pb²⁺ = 2.8x10⁻²M:
Ksp = 4(2.8x10⁻²)³
<h3>Ksp = 8.8x10⁻⁵</h3>
The molarity of a solution is the number of moles of a substance in one liter of that substance.
The molar mass of ammonium sulfate (NH4)2SO4 is 132.14 grams/mole
Calculate the moles of ammonium sulfate:
(4.50 grams)/(132.14 grams/mole) = 0.0341 moles of ammonium sulfate
convert mL to Liters 250. mL becomes 0.250 liters
Take the number of moles over the number of liters
0.0341 moles / 0.250 liters = 0.136 molar or 0.136M = molarity of the solution
White light is what the eye sees when wavelengths of all colours reach the eye.
It is a combination of Red, Blue and Green wavelengths of light, that is perceived as white.
Sodium is a metal, Chloride is a non-metal.
Right off the bat, you know that in order for both of these atoms to achieve a full valence shell that the metal has to lose electrons, and the non-metal has to gain them.
Therefore, you have the transfer of electrons in this bond in order to form ions.
Na+ and Cl-. This transfer of electrons in a bond is called an {{ Ionic Bond}}
Answer: 16.32 g of
as excess reagent are left.
Explanation:
To calculate the moles :
According to stoichiometry :
2 moles of
require = 1 mole of
Thus 0.34 moles of
will require=
of
Thus
is the limiting reagent as it limits the formation of product and
is the excess reagent.
Moles of
left = (0.68-0.17) mol = 0.51 mol
Mass of
Thus 16.32 g of
as excess reagent are left.