1. Make an observation
: My toaster doesn't toast my bread
2. Ask a question
: Why doesn't my toaster work?
3. Form a hypothesis
: My coffeemaker works when plugged into the outlet
4. Make a prediction
: If something is wrong with the outlet, then my coffeemaker also won't work when plugged into it
5. Conduct an experiment
: I plug my coffeemaker into the outlet
6. Analyze the results
: There is something wrong with the electrical outlet
Explanation:
The solution to the problem is as shown above.
- A scientific method follow a methodical way of critically carrying out an inquiry into an observation.
- Firstly, an observation is usually made with our senses. Here the researcher observes that the toaster does not toast his bread probably after a long wait.
- He then proceeds to ask why the toaster does not work.
- To investigate this, the forms a hypothesis. A hypothesis is a scientific guess. It is a tentative proposition about an investigation.
- The researcher then makes a prediction about the outlet that might be faulty.
- With this background, he goes on to carry out an experiment to substantiate his findings. This is seen when he plugs the coffeemaker into the outlet.
- From the analysis of result, he sees that that something is wrong with the outlet.
Learn more:
purpose of experiment brainly.com/question/5096428
#learnwithBrainly
Answer:
0.05 mol
Explanation:
The balanced equation for the reaction that takes place is:
- 2C₂H₂ (g) + 5O₂ (g) → 4CO₂ (g) + 2H₂O (g)
Now we<u> convert 0.10 moles of carbon dioxide (CO₂) into moles of acetylene (C₂H₂)</u>, using the <em>stoichiometric coefficients of the balanced reaction</em>:
- 0.10 mol CO₂ *
= 0.05 mol C₂H₂
Answer: Region 3
Explanation: The temperature and time graph suggests that region 3 is the region in which the substance can co exist in both the phases that is solid phase and liquid phase.
Region 1 explains that the the solid has just started melting and there occurs a break point and then region 2 again explains that the solid is taking more time with temperature to get converted into the liquid and thus region 3 explains the equilibrium between the two phases.
C. Grams per Cubic Centimeter