Answer:
80×5×10=4000J
so therefore, work done on the body is 4000J
Altitude is the angle measured above the horizon
Answer:
Use a faster than normal approach and landing speed.
Explanation
For pilots, it is one of the critical moments of the flight that concentrates 12% of fatal accidents. The main difficulty lies in reaching enough speed to take flight within the space of the runway. At present, it ceased to be a challenge for the aircraft, since the engine power improved, so the takeoff ceased to be the most dangerous moment of the flight.
One of the risks that aircraft face today is that some of the engines fail while the plane accelerates. In that case, the pilot must decide in an instant whether it is better to take flight and solve the problem in the air or if it is preferable not to take off.
Although for many staying on the ground might seem the most sensible option, it is not as simple as it seems: to suddenly decelerate an aircraft, with the weight it has and the speed it reaches can cause accidents. However, today a special cement was designed that runs around the runways of the airports, which when coming into contact with the wheels of the aircraft the ground breaks and helps to slow down.
Answer:
A.) 3605.6 N
B.) 33.7 degree
Explanation:
To find the result force acting on the wing of the airplane, we need to resolve the forces into x and y components
Resolving into x component :
Sum of forces = 3500 - 500 = 3000N
Resolving into y component:
Sum of forces = 2000N
Resultant force Fr = sqrt ( Fx^2 + Fy^2)
Fr = sqrt ( 3000^2 + 2000^2 )
Fr = sqrt ( 9000000 + 4000000 )
Fr = sqrt ( 13000000)
Fr = 3605.6 N
Therefore, resultant force acting on the wing is 3605.6 N
The direction of the vector will be:
Tan Ø = Fy / Fx
Substitute Fx and Fy into the formula
Tan Ø = 2000 / 3000
Tan Ø = 0.66666
Ø = tan^-1(0. 66666)
Ø = 33.7 degree.
Answer:
C. Pressure gradient equals gas flow over resistance.
Explanation:
As we know that pressure gradient is the driving force for the gas to flow from one point to other point
And we know that the flow rate is directly proportional to the driving force and it inversely depends on the resistance to flow
so we can say
Flow Rate = 
Flow Rate = 
so we can say that correct statements are as below
A. Gas flow equals pressure gradient over resistance.
B. Resistance equals pressure gradient over gas flow.
D. The amount of gas flowing in and out of the alveoli is directly proportional to the difference in pressure or pressure gradient between the external atmosphere and the alveoli.