We use the osmotic pressure to determine the concentration of the solute in the solution. Then, we multiply the volume of the solution to determine the number of moles of solute particles. We need to establish to equations since we have two unknowns, the mass of of each solute. We do as follows:
osmotic pressure = CRT
<span>C = 7.75 / 0.08205 (296.15) = 0.3189 mol / L</span>
<span>moles of particles = C*V = 0.3189*0.250 =0.0797 mol </span>
<span>0.0797 = moles of sucrose + 2*moles of salt </span>
<span>x + 2y = 0.0797 </span>
<span>and </span>
<span>x(MMsucrose) + y(MMNaCl) = 10.2</span>
<span>342x + 58.5y = 10.2
</span>
<span>solve for x and y
</span>
<span>x = 0.0252 mol sucrose</span>
<span>y = 0.0273 mol NaCl
</span>
<span>mass Sucrose = 0.0252(342) = 8.6184 g </span>
<span>mass NaCl = 0.0273(58.5) = 1.5971 g </span>
<span>% NaCl = (1.5971 / 10.2)*100 = 15.66%</span>
They are the same as animals ability to find food and get away from others.
Answer:
When sodium chloride dissolves in water to make a saturated solution there is a 2.5 per cent reduction in volume. ... The solubility of salt does not change much with temperature, so there is little profit in using hot water.
In chemistry, the ball-and-stick model is a molecular ideal of a chemical matter which is to expose both the three-dimensional position of the atoms and the bonds among them. The atoms are normally symbolise by spheres, join by rods which shows the bonds.
Formaldehyde forms formaldehyde structure bond it shares double bond with O2 atoms.
Formaldehyde also known as methanol .
Methanol is colourless.
It is flammable.
It is gas at room temperature.
Methanol having pungent odor and it is a volatile organic compounds.
It is made by the composition of Hydrogen, oxygen, and carbons.
To know more about Formaldehyde here :
brainly.com/question/14895085?referrer=searchResults
#SPJ4
I think it’s c bc it makes more sense