Explanation:
It is given that,
Force on piston, F₁ = 8800 N
Area, 
Area, 
Let F₂ is the force exerted on the second piston. Using Pascal's law as :
Pressure at piston 1 = Pressure at piston 2




So, the force exerted by a second piston is 35200 N. Hence, this is the required solution.
Answer:
W = 600 J
Explanation:
We have,
According to attached figure,
Height of the inclined plane is 60 m
Force acting on the block is 10 N
It is required to find the work must be done against gravity to move it to the top of the incline. The work done is given by :
W = mgh
or

So, the work done against the gravity is 600 J.
Answer:
electric field E = (1 /3 e₀) ρ r
Explanation:
For the application of the law of Gauss we must build a surface with a simple symmetry, in this case we build a spherical surface within the charged sphere and analyze the amount of charge by this surface.
The charge within our surface is
ρ = Q / V
Q ’= ρ V
'
The volume of the sphere is V = 4/3 π r³
Q ’= ρ 4/3 π r³
The symmetry of the sphere gives us which field is perpendicular to the surface, so the integral is reduced to the value of the electric field by the area
I E da = Q ’/ ε₀
E A = E 4 πi r² = Q ’/ ε₀
E = (1/4 π ε₀) Q ’/ r²
Now you relate the fraction of load Q ’with the total load, for this we use that the density is constant
R = Q ’/ V’ = Q / V
How you want the solution depending on the density (ρ) and the inner radius (r)
Q ’= R V’
Q ’= ρ 4/3 π r³
E = (1 /4π ε₀) (1 /r²) ρ 4/3 π r³
E = (1 /3 e₀) ρ r
C. Planet A orbits its star faster than Planet B.
Explanation:
since Planet A is closer to the star due to its gravitational force, it will orbit its star faster than planet B
hope this helps :)
Answer:
the Group 1A metals such as sodium and potassium form +1 charges,
Explanation: