Answer:
Explanation:
7a) t = d/v = 100/45cos14.5 = 2.29533...= 2.30 s
7b) h = ½(9.81)(2.29533/2)² = 6.46056... = 6.45 m
or
h = (45sin14.5)² / (2(9.81)) = 6.47 m
which rounds to the same 6.5 m when limiting to the two significant digits of the initial velocity.
Question:
1) The universe is cooling which, according to the Big Bang Theory, is expected to happen as the cosmos accumulates.
2) The universe is warming which, according to the Big Bang Theory, is expected to happen as the cosmos disperses.
3) The universe is cooling which, according to the Big Bang Theory, is expected to happen as the cosmos disperses.
4) The universe is warming which, according to the Big Bang Theory, is expected to happen as the cosmos accumulates.
Answer:
The correct option is;
3) The Universe is cooling which, according to the Big Bang Theory, is expected to happen as the cosmos disperses
Explanation:
With the temperature measurement carried out using the CSIRO radio telescope, Astronomers have been able to determine a temperature difference in the universe from 5.08 Kelvin 7.2 billion light years away to 2.73 Kelvin in the Universe today, which is in support of the Big Bang theory that as the Universe expanded from a state of extreme temperature that cools down as the Universe expands or the cosmos disperses.
To find the impulse you multiply the mass by the change in velocity (impulse=mass×Δvelocity). So in this case, 3 kg × 12 m/s ("12" because the object went from zero m/s to 12 m/s).
The answer is 36 kg m/s
<span>The magnetic field does not continually spread outward from the wire.</span>
The longer you spend reading and thinking about this question,
the more defective it appears.
-- In each case, the amount of work done is determined by the strength
of
the force AND by the distance the skateboard rolls <em><u>while you're still
</u></em>
<em><u>applying the force</u>. </em>Without some more or different information, the total
distance the skateboard rolls may or may not tell how much work was done
to it.<em>
</em>
-- We know that the forces are equal, but we don't know anything about
how far each one rolled <em>while the force continued</em>. All we know is that
one force must have been removed.
-- If one skateboard moves a few feet and comes to a stop, then you
must have stopped pushing it at some time before it stopped, otherwise
it would have kept going.
-- How far did that one roll while you were still pushing it ?
-- Did you also stop pushing the other skateboard at some point, or
did you stick with that one?
-- Did each skateboard both roll the same distance while you continued pushing it ?
I don't think we know enough about the experimental set-up and methods
to decide which skateboard had more work done to it.