Answer:
The weight of an object is the force on it caused by the gravity due to the planet. The weight of an object and the gravitational field strength are directly proportional. For a given mass, the greater the gravitational field strength of the planet, the greater its weight.
Weight can be calculated using the equation:
weight = mass × gravitational field strength
This is when:
weight (W) is measured in newtons (N)
mass (m) is measured in kilograms (kg)
gravitational field strength (g) is measured in newtons per kilogram (N/kg)
We have to covert 512 cal of heat in kilo joules.
As, 1 cal = 0.004184 kJ = 4.184 joules.
Therefore,

Thus, combustion of a small wooden match produces approximately ( in kilo joules ) is 2.142 kJ .
The variable that changes is the period of the motion.
<h3>What is simple harmonic motion?</h3>
The term simple harmonic motion refers to a regular repeating motion. The acceleration of the SHM is always directed towards the center. The spring is an example of a system undergoing simple harmonic motion.
From the description in the question, the variable that changes is the period of the motion.
Learn more about simple harmonic motion: brainly.com/question/17315536
Answer:

Explanation:
according to snell's law

refractive index of water n_w is 1.33
refractive index of glass n_g is 1.5


now applying snell's law between air and glass, so we have


![\beta = sin^{-1} [\frac{n_g}{n_a}*sin\alpha]](https://tex.z-dn.net/?f=%5Cbeta%20%3D%20sin%5E%7B-1%7D%20%5B%5Cfrac%7Bn_g%7D%7Bn_a%7D%2Asin%5Calpha%5D)
we know that 
