Answer:

Explanation:



Electron information needed to solve the question:






![E=\frac{9.11x10{-31}kg*3.0x10^{12}m/s^2}{-1.6x10{-19}C}-[(19.0x10^3mj+18.0x10^3m)xi(400x10^{-6}T)]](https://tex.z-dn.net/?f=E%3D%5Cfrac%7B9.11x10%7B-31%7Dkg%2A3.0x10%5E%7B12%7Dm%2Fs%5E2%7D%7B-1.6x10%7B-19%7DC%7D-%5B%2819.0x10%5E3mj%2B18.0x10%5E3m%29xi%28400x10%5E%7B-6%7DT%29%5D)
![E=-i17.08N/C-[7.6(-k)+7.2(j)]N/C](https://tex.z-dn.net/?f=E%3D-i17.08N%2FC-%5B7.6%28-k%29%2B7.2%28j%29%5DN%2FC)

Answer:
Electric and magnetic field waves are oriented at 90 degree angles relative to each other.
Explanation:
Answer:
I'm pretty sure it's the third one where velocity goes from positive to negative
Explanation:
the positive velocity is before the object hits the ground and the negative is after
Using the constant acceleration formula v^2 = u^2 + 2as, we can figure out that it would take a distance of 193.21m to reach 27.8m/s