Explanation:
B. More mass results in less acceleration.
Answer:
The acceleration of the object is
Explanation:
Given:
Initial velocity of object
= 200 feet/second
Final velocity of object
= 50 feet/second
Time of travel = 5 seconds
To calculate acceleration of the object we will find the rate of change of velocity with respect to time.
So, acceleration
is given by:

where
represents final velocity,
represents initial velocity and
is time of travel.
Plugging in values to evaluate acceleration.



The acceleration of the object is
(Answer). The negative sign shows the object is slowing down.
Please,,,,,,,,,,,,,,,,,,,
Airida [17]
Answer:
bsjzbzkzznnzkzkznzjzbzbzbzbzbzbzbzbznznenenenenenene
Answer:
a). 1.218 m/s
b). R=2.8
Explanation:


Momentum of the motion the first part of the motion have a momentum that is:


The final momentum is the motion before the action so:
a).




b).
kinetic energy

Kinetic energy after

Kinetic energy before

Ratio =

Answer:
Speed is solved with time and distance but has no direction
Average velocity is solved with Δx/Δt and has a direction