1) Compund Ir (x) O(y)
2) Mass of iridium = mass of crucible and iridium - mass of crucible = 39.52 g - 38.26 g = 1.26 g
3) Mass of iridium oxide = mass of crucible and iridium oxide - mass of crucible = 39.73g - 38.26g = 1.47g
4) Mass of oxygen = mass of iridum oxide - mass of iridium = 1.47g - 1.26g = 0.21g
5) Convert grams to moles
moles of iridium = mass of iridium / molar mass of iridium = 1.26 g / 192.17 g/mol = 0.00656 moles
moles of oxygen = mass of oxygen / molar mass of oxygen = 0.21 g / 15.999 g/mol = 0.0131
6) Find the proportion of moles
Divide by the least of the number of moles, i.e. 0.00656
Ir: 0.00656 / 0.00656 = 1
O: 0.0131 / 0.00656 = 2
=> Empirical formula = Ir O2 (where 2 is the superscript for O)
Answer: Ir O2
Answer:
Head loss in turbulent flow is varying as square of velocity.
Explanation:
As we know that head loss in turbulent flow given as

Where
F is the friction factor.
L is the length of pipe
V is the flow velocity
D is the diameter of pipe.
So from above equation we can say that

It means that head loss in turbulent flow is varying as square of velocity.
We know that loss in flow are of two types
1.Major loss :Due to surface property of pipe
2.Minor loss :Due to change in momentum of fluid.
<u>Answer:</u> For the given amount of sweat lost, the amount of energy required will be 692,899 Joules.
<u>Explanation:</u>
We are given:
Heat of vaporization for water = 2257 J/g
Amount of sweat lost = 307 grams
Applying unitary method:
For 1 g of sweat lost, the energy required is 2257 Joules
So, for 307 grams of sweat lost, the energy required will be = 
Hence, for the given amount of sweat lost, the amount of energy required will be 692,899 Joules.
It will slowly rotten and turn brown
25 moles of C3H8 will be produced from 75 moles of CO2.
<h3>Mole calculation</h3>
To find the value of moles of a product from the number of moles of a reactant, it is necessary to observe the stoichiometric ratio between them:

Analyzing the reaction, it is possible to see that the stoichiometric ratio is 1:3, so we can perform the following expression:
C3H8 CO2


So, 25 moles of C3H8 will be produced from 75 moles of CO2.
Learn, more about mole calculation in: brainly.com/question/2845237