Electrons uniting with electrons of another atom is the cause in this relationship. The effect is a chemical change.
A model of the atom devised by Ernest Rutherford.
The mass change, or the mass defect, can be calculated by the formula that is very known to be associated with Albert Einstein.
E = Δmc²
where
E is the energy gained or released during the reaction
c is the speed of light equal to 3×10⁸ m/s
Δm is the mass change
(1.715×10³ kJ)(1,000 J/1 kJ) = Δm(3×10⁸ m/s)²
Δm = 1.91×10⁻¹¹ kg
Explanation:
Because molarity is mol/L, we'll have to convert 17g to mol.
After obtaining the mol, we'll divide that by the volume to obtain Molarity.
Answer:
B and C
Explanation:
When we have to do a buffer solution we always have to choose the reaction that has the <u>pKa closer to the desired pH value</u>. When we find the pKa values we will obtain:
![pKa_1=-Log[6.9x10^-^3]=2.16](https://tex.z-dn.net/?f=pKa_1%3D-Log%5B6.9x10%5E-%5E3%5D%3D2.16)
![pKa_2=-Log[6.2x10^-^8]=7.20](https://tex.z-dn.net/?f=pKa_2%3D-Log%5B6.2x10%5E-%5E8%5D%3D7.20)
![pKa_3=-Log[4.8x10^-^13]=12.31](https://tex.z-dn.net/?f=pKa_3%3D-Log%5B4.8x10%5E-%5E13%5D%3D12.31)
The closer value is pKa2 with a value of 7.2. Therefore we have to use the second reaction. In which
is the <u>acid</u> and
is the <u>base</u>. Therefore the answer for the first question is B and the answer for the second question is C.