Roygbv evjnefvvnefv ekfv k kn ke nv
Answer:
v=32.49 m/s
Explanation:
Given that
Distance ,d= 66 m
Initial speed of the car ,u = 0 m/s
Coefficient of friction ,μ = 0.8
Lets take the total mass of the car = m
The acceleration of the car is given as
a = μ g ( g= 10 m/s² )
Now by putting the values in the above equation we get
a= 0.8 x 10 m/s²
a= 8 m/s²
We know that ,final speed is given as
v²= u ²+ 2 a d
Now putting the value
v²=0² + 2 x 8 x 66
v²= 1056
v=32.49 m/s
First we will find the speed of the ball just before it will hit the floor
so in order to find the speed of the cart we will first use energy conservation



So by solving above equation we will have

now in order to find the momentum we can use



Answer:
4.47 km
Explanation:
If we draw the path of the van then we get a shape with two exposed points A and D. If we draw a line from point D perpendicular to BA we get point E. This gives us a right angled triangle ADE.
From Pythagoras theorem
AD² = AE² + ED²

Hence, the van is 4.47 km from its initial point