Answer:
Yes. The two elements can combine to form different compounds.
Explanation:
Two elements can combine at different ratios.
Consider CO and CO₂. Both are made from carbon and oxygen. However, C and O combine at a 1:1 ratio in CO but at a 1:2 ratio in CO₂. CO is a fuel; it burns in the air. CO₂ does not burn in the air; it is used to put out fires and is found in extinguishers. CO and CO₂ are two distinct compounds.
There are many ways for the elements to combine with each other. As a result, the first twenty elements on the periodic table alone can produce a large number of compounds.
Answer:
Explanation:
<u>1. Molecular chemical equation:</u>
- 2 KClO₃(s) → 2 KCl(s) + 3 O₂(g)
<u>2. Mole ratios:</u>
- 2 mol KClO₃ : 2 mol KCl : 3 mol O₂
<u>3. Number of moles of KClO₃</u>
- Number of moles = mass in grams / molar mass
- Molar mass of KClO₃ = 122.55 g/mol
- Number of moles of KClO₃ = 54.3 g / 122.5 g/mol ≈ 0.44308 mol
<u>3. Number of moles of O₂</u>
As per the theoretical mole ratio 2 mol of KClO₃ produce 3 mol of O₂, then set up a proportion to determine how many moles of O₂ will be produced from 0.44038 mol of KClO₃.
- 3 mol O₂ / 2 mol KClO₃ = x / 0.44038 mol KClO₃
- x = (3 / 2) × 0.44308 mol O₂ = 0.6646 mol O₂
Round to 3 significant figures: 0.665 mol of O₂ ← answer
The reactions based on the absorption and release of the energy are called endothermic and exothermic reactions. The reaction is exothermic.
<h3>What is an exothermic reaction?</h3>
Exothermic reactions are the reaction in which the reactant produces products that release energy from the system to the surroundings. In the reaction bond energy of the reactant is less than the product.
Energy from the system is released in the form of heat, sound, light and electricity. The weak bonds of the compounds are replaced with stronger ones and the standard enthalpy of the reaction is negative.
Therefore, option c. reaction is exothermic is correct.
Learn more about the exothermic reactions here:
brainly.com/question/26616927
<span>31.9 grams butane needed to produce 96.7 grams CO2
</span>