Answer:
sound loudness is measured in decibels, A. True
Answer:
E - Be and O
A - Mg and N
E - Li and Br
F - Ba and Cl
B - Rb and O
Explanation:
Be and O
Be is a metal that loses 2 e⁻ to form Be²⁺ and O is a nonmetal that gains 2 e⁻ to form O²⁻. For the ionic compound to be neutral, it must have the form BeO (E-MX).
Mg and N
Mg is a metal that loses 2 e⁻ to form Mg²⁺ and N is a nonmetal that gains 3 e⁻ to form O³⁻. For the ionic compound to be neutral, it must have the form Mg₃N₂ (A-M₃X₂).
Li and Br
Li is a metal that loses 1 e⁻ to form Li⁺ and Br is a nonmetal that gains 1 e⁻ to form Br⁻. For the ionic compound to be neutral, it must have the form LiBr (E-MX).
Ba and Cl
Ba is a metal that loses 2 e⁻ to form Ba²⁺ and Cl is a nonmetal that gains 1 e⁻ to form Cl⁻. For the ionic compound to be neutral, it must have the form BaCl₂ (F-MX₂).
Rb and O
Rb is a metal that loses 1 e⁻ to form Rb⁺ and O is a nonmetal that gains 2 e⁻ to form O²⁻. For the ionic compound to be neutral, it must have the form Rb₂O (B-M₂X).
A solution (in this experiment solution of NaNO₃) freezes at a lower temperature than does the pure solvent (deionized water). The higher the
solute concentration (sodium nitrate), freezing point depression of the solution will be greater.
Equation describing the change in freezing point:
ΔT = Kf · b · i.
ΔT - temperature change from pure solvent to solution.
Kf - the molal freezing point depression constant.
b - molality (moles of solute per kilogram of solvent).
i - Van’t Hoff Factor.
First measure freezing point of pure solvent (deionized water). Than make solutions of NaNO₃ with different molality and measure separately their freezing points. Use equation to calculate Kf.
<span>The mass of one mole of sodium bicarbonate (aka NaHCO3) is equal to 1 * 22.99g/mol + 1 * 1.00g/mol + 1 * 12.01g/mol + 3 * 16.00g/mol = 83.91g/mol. From this, we can convert 4.2g of NaHCO3 to moles by dividing by 83.91g/mol, to get 0.050 moles of sodium bicarbonate.</span>