Answer:
Explanation:
Brownian motion is a random (irregular) motion of particles e.g smoke particle. The set up in the diagram can be used to observe the motion of smoke.
1. The apparatus used are:
A is a source of light
B is a converging lens
C is a glass smoke cell
D is a microscope
2. The uses of the apparatus are:
A - produces the light required to so as to see clearly the movement of the particles.
B - converges the rays of light from the source to the smoke cell.
C - is made of glass and used for encamping the smoke particles so as not to mix with air.
D - is used for the clear view or observation or study of the motion of the smoke particles in the cell.
Answer:
Explanation:
Given
mass of core
Average specific heat
And rate of increase of temperature =
Now
P=
Thus
Thank you for posting your question here at brainly. I hope the answer will help you. Feel free to ask more questions.
t=(0-(250sin75)^2)/-9.8
<span>the distance one is (2500+610)- (250m/s*cos75)*t=Dh Dh=horizontal distance </span>
<span>the max height one is d=0.5*9.8*t^2 </span>
<span>d= max height subtract 1800-d</span>
Answer:
44.8 m/s
Explanation:
Use the Initial Speed Formula:
InS = 2(d/t) - Final Speed
InS = 2(55/1,25) - 43.2
InS = 2.44 - 43,2
InS = 88 - 43,2
InS = 44.8 m/s
1). The equation is: (speed) = (frequency) x (wavelength)
Speed = (256 Hz) x (1.3 m) = 332.8 meters per second
2). If the instrument is played louder, the amplitude of the waves increases.
On the oscilloscope, they would appear larger from top to bottom, but the
horizontal size of each wave doesn't change.
If the instrument is played at a higher pitch, then the waves become shorter,
because 'pitch' is directly related to the frequency of the waves, and higher
pitch means higher frequency and more waves in any period of time.
If the instrument plays louder and at higher pitch, the waves on the scope
become taller and there are more of them across the screen.
3). The equation is: Frequency = (speed) / (wavelength)
(Notice that this is exactly the same as the equation up above in question #1,
only with each side of that one divided by 'wavelength'.)
Frequency = 300,000,000 meters per second / 1,500 meters = 200,000 per second.
That's ' 200 k Hz ' .
Note:
I didn't think anybody broadcasts at 200 kHz, so I looked up BBC Radio 4
on-line, and I was surprised. They broadcast on several different frequencies,
and one of them is 198 kHz !