1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ilya [14]
3 years ago
5

An earth satellite in an elliptical orbit travels slowest when it is

Physics
1 answer:
ehidna [41]3 years ago
8 0
The satellite travels slowest when it is at the maximum distance from the Earth.

We can verify this in two ways:

1) By using Kepler's second law: "A line segment joining a a satellite with the Earth covers equal areas during equal intervals of time". This means that the larger is the distance of the satellite from Earth, the slower it goes.

2) by looking at the forces acting on the satellite. There is only one force acting on it: the gravitational attraction exerted by Earth, and this force is the centripetal force that keeps the satellite in circular (elliptical, actually) motion. So we can write:
G \frac{Mm}{r^2}=m \frac{v^2}{r}
where on the left we wrote the formula of the gravitational force, while on the right the centripetal force. G is the gravitational constant, M the Earth's mass, m the satellite's mass, v its velocity and r the distance of the satellite from the center of Earth.
Simplifying, we get
v= \sqrt{ \frac{GM}{r} }
which is the speed of the satellite when it is at a distance r from Earth: the larger r, the smaller the speed v.
You might be interested in
baseball is hit into the air at an initial speed of 37.2 m/s and an angle of 49.3 ° above the horizontal. At the same time, the
Agata [3.3K]

Answer:

The average speed of the fielder is 5.24 m/s

Explanation:

The position vector of the ball after it was hit can be calculated using the following equation:

r = (x0 + v0 · t · cos α, y0 + v0 · t · sin α + 1/2 · g · t²)

Where:

r = position vector at time t.

x0 = initial horizontal position.

v0 = initial velocity.

t = time.

α = launching angle.

y0 = initial vertical position

g = acceleration due to gravity (-9.8 m/s² considering the upward direction as positive).

Please, see the attached figure for a graphical description of the problem.

When the ball is caught, its position vector will be (see r1 in the figure):

r1 = (r1x, 0.873 m)

Then, using the equation of the position vector written above:

r1x = x0 + v0 · t · cos α

0.873 m = y0 + v0 · t · sin α + 1/2 · g · t²

Since the frame of reference is located at the point where the ball was hit, x0 and y0 = 0. Then:

r1x = v0 · t · cos α

0.873 m = v0 · t · sin α + 1/2 · g · t²

Let´s use the equation of the y-component of r1 to obtain the time of flight of the ball:

0.873 m = 37.2 m/s · t · sin 49.3° - 1/2 · 9.8 m/s² · t²

0 = -0.873 m + 37.2 m/s · t · sin 49.3° - 4.9 m/s² · t²

Solving the quadratic equation:

t = 0.03 s and t = 5.72 s.

It would be impossible to catch the ball immediately after it is hit at t = 0.03 s. Besides, the problem says that the ball was caught on its way down. Then, the time of flight of the ball is 5.72 s.

With this time, we can calculate r1x which is the horizontal distance traveled by the ball from home:

r1x = v0 · t · cos α

r1x = 37.2 m/s · 5.72 s · cos 49.3°

r1x = 1.39 × 10² m

The distance traveled by the fielder is (1.39 × 10² m - 1.09 × 10² m) 30.0 m.

The average velocity is calculated as the traveled distance over time, then:

average velocity = treveled distance / elapsed time

average velocity = 30.0 m / 5.72 s = 5.24 m/s

8 0
3 years ago
A speed-time graph is shown below:
VladimirAG [237]

Answer: 0.5 m/s^{2}

Explanation:

Average acceleration a_{ave} is the variation of velocity \Delta V over a specified period of time \Delta t:

a_{ave}=\frac{\Delta V}{\Delta t}}

Where:

\Delta V=V_{f}-V_{o} being V_{o}=0 cm/s the initial velocity and V_{f}=4 cm/s the final velocity  (according to the information given from the described graph)

\Delta t=8 s

Then:

a_{ave}=\frac{4 cm/s -0 cm/s}{8 s}}

a_{ave}=0.5 m/s^{2}

5 0
3 years ago
A 2.00 kg ball is thrown upward at some unknown angle from the top of a 20.0 m high building. If the initial magnitude of the ve
Charra [1.4K]

Answer: 28.1

Explanation:

5 0
2 years ago
Which of these best describes the relationship between the incident ray, the reflected ray, and the normal for a curved mirror?(
lions [1.4K]

For a curved mirror, all points have the same normal and the angle of incidence is also equal to the angle of reflection.

According to the laws of reflection, the incident ray, reflected ray and normal all lie on the same plane. For a curved mirror, the normal remains the same at all points along the curved mirror.

Again, the angle made between the incident ray and the normal is the same as the angle made between the reflected ray and the normal. Therefore, the angle of reflection is equal to the angle of incidence.

Learn more: brainly.com/question/17638582

8 0
2 years ago
The temperature of a substance is _________
emmainna [20.7K]
The answer is B.
Temperature is just another term for the average kinetic energy of a substance.
6 0
3 years ago
Other questions:
  • What is the proper function of a linkage? *
    6·1 answer
  • An engineer is adding a heat sink to a motor to help absorb some of the heat produced by the motor. Which piece of metal would a
    11·2 answers
  • Three 9W -3 V bulbs is to be lighted by a suppy of 12 Volt.For this,a wire is to be connected in series with it.Th resistance of
    14·2 answers
  • Lisa can throw a rock into the air at 35 m/s how far will the rock fly into the air ?
    7·1 answer
  • What is the anode in an alkaline battery?
    5·2 answers
  • How the volume of regular solids and of liquids is measured?​
    12·2 answers
  • If a toy car has a centripetal acceleration of 50 m/s2 and was making the turn at 10 m/s. what was his radius
    9·1 answer
  • A 500 kg car is moving at 30 m/s. The driver sees a barrier ahead. If the car takes 100 m to come to rest, what is the magnitude
    10·1 answer
  • You hold glider AA of mass 0.125 kgkg and glider BB of mass 0.375 kgkg at rest on an air track with a compressed spring of negli
    12·1 answer
  • two masses 3 kg and 5 kg are connected by a string. a force of 20 n is applied to the 3 kg mass. what is the tension on the stri
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!