Answer:
Explanation:
I am sitting on a train car traveling horizontally at a constant speed of 50 m/s. I throw a ball straight up into the air. Before , the ball gets separated from my hand , both me the ball will be moving with velocity of 50 m /s in horizontal direction .
As soon as ball is separated from the hand , it acquires addition velocity in upward direction and acceleration in downward direction . This will give relative velocity to the ball with respect to me . So I will see the ball going in upward direction under gravitational acceleration . It appears as if I am sitting at rest and ball is going in upward direction under deceleration . My motion at 50 m/s will have no effect on the motion of ball in upward direction , according to first law of Newton . It is so because ball too will be moving in forward direction with the same speed which will not be visible to me because I too am moving with the same speed.
If I am sitting at rest at home and I threw a ball straight up into the air , I will have the same experience of seeing ball going in similar way as described above.
Answer:
See attached document
Explanation:
Entire process for deriving the asked expression dV across the bridge as function of dP is illustrated in the attachment below.
The document gives a step-by step process for arriving at the expression. However, manipulation of algebraic equations is skipped for the conciseness of the document.
It also gives the expression for the case when all resistors have different nominal values.
Answer:

Explanation:
As we know that there is no external torque on the system of two disc
then the angular momentum of the system will remains conserved
So we will have

now we have

also we have

now from above equation we have

now we have


Answer:
The relationship between acceleration and time relates to the velocity and how it changes throughout the movement of an object.