The moment of inertia of the flywheel is 2.63 kg-
It is given that,
The maximum energy stored on the flywheel is given as
E=3.7MJ= 3.7×
J
Angular velocity of the flywheel is 16000
= 1675.51
So to find the moment of inertia of the flywheel. The energy of a flywheel in rotational kinematics is given by :
E = 

By rearranging the equation:
I = 
I = 2.63 kg-
Thus the moment of inertia of the flywheel is 2.63 kg-
.
Learn more about moment of inertia here;
brainly.com/question/13449336
#SPJ4
Answer:
it snaps
Explanation:
the more force you put on it, the wired out it gets than it snaps. I think
Young's double slit experiment(YDSE) can be used for any kind of waves such as electromagnetic waves, sound waves, water waves, gravity waves. YDSE is based on interference. In this experiment, we make two waves interfere in order to obtain bright and dark fringes on the screen(in case of light).
You can carry this out with water, would be great if you try this at pond or water reservoir in order to see perfect ripples.
Answer:
C
Explanation:
horizintal speed stays same
only vertical speed changes
so H speed will stay 30 m/s
Answer:
F₂ = -7.3 N
Explanation:
Given that,
The mass of an object, m₁ = 3.7 kg
First force, F₁ = 11 N
The net acceleration of the object is 1 m/s².
We know that,
F₁+F₂ = ma
11+F₂ = (3.7)(1)
F₂ = 3.7-11
F₂ = -7.3 N
so, the other force is 7.3 N and it is acting in west direction.