DNA is essentially a storage molecule. It contains all of the instructions a cell needs to sustain itself. These instructions are found within genes, which are sections of DNA made up of specific sequences of nucleotides. In order to be implemented, the instructions contained within genes must be expressed, or copied into a form that can be used by cells to produce the proteins needed to support life.
The instructions stored within DNA are read and processed by a cell in two steps: transcription and translation. Each of these steps is a separate biochemical process involving multiple molecules. During transcription, a portion of the cell's DNA serves as a template for creation of an RNA molecule. (RNA, or ribonucleic acid, is chemically similar to DNA, except for three main differences described later on in this concept page.) In some cases, the newly created RNA molecule is itself a finished product, and it serves an important function within the cell. In other cases, the RNA molecule carries messages from the DNA to other parts of the cell for processing. Most often, this information is used to manufacture proteins. The specific type of RNA that carries the information stored in DNA to other areas of the cell is called messenger RNA, or mRNA.
How does transcription proceed?
Transcription begins when an enzyme called RNA polymerase attaches to the DNA template strand and begins assembling a new chain of nucleotides to produce a complementary RNA strand. There are multiple types of types of RNA. In eukaryotes, there are multiple types of RNA polymerase which make the various types of RNA. In prokaryotes, a single RNA polymerase makes all types of RNA. Generally speaking, polymerases are large enzymes that work together with a number of other specialized cell proteins. These cell proteins, called transcription factors, help determine which DNA sequences should be transcribed and precisely when the transcription process should occur.
B=the same , but a different charger
Answer: True
Sometimes the use of condoms can't prevent STIs(sexually transmitted infections) because of the manufacturer fault. STIs that caused by lice is not protected too because the condom doesn't cover hair. Other than that, a condom provides a good physical barrier that prevents diseases that transmitted body liquid.
Answer:
A)100mL B)50mL C)The second option D)Hypoosmotic Environment
Explanation:
The average Na concentration in the seas and oceans of the world is around 3,5% which mean that in 100 ml of sea water, there is around 3,5 grams of Na.
The weight of one mol of NaCl is 58,44 grams. For 3,5 grams of NaCl, we get 3,5/58,44 = 0,060 mol of NaCl which is 0,060x1000 = 60 mmol/100ml. According to this and the information given in the question about the secretion of the salt glands', if the average sodium concentration is 600mmol/L, we have 60*10 = 600mmol/L so it would take 100 mililiters of water to excrete.
If the average Na concentration of the salt gland's secretion were 300 mmol/L, only 50 mililiters of water would be needed to excrete the same sodium load.
The second option of secretion is hyperosmotic to seawater because the concentration is higher.
Osmoregulation is the process of balancing the amount of water and salt between the body of the organism and its surrounding environment. For salt glands to be advantageous for osmoregulation, they need to be in a hypoosmotic environment.
I hope this answer helps.
Any substance that triggers an immune response is an antigen(s).