Atmospheric pressure increases as altitude increases therefore boiling time will need to be extended
When cooled by liquid nitrogen, the balloon shrinks (not as much as the air-filled balloon) and it sinks down on the table. When heating up, the balloon slowly rises and flies up in the air again. Explanation 1: The volume of the balloon decreases by the low temperature, because the gas inside is cooled down.
Answer:
1.03
Explanation:
You would take 0.00103 and move the decimal like this; 0001.03, we wouldn't have the zeroes in front of the one, as it can throw us off. Therefore, your answer would be 1.03.
Hope I helped! Don't hesitate to let me know if I made a mistake.
Answer:
11.9 g of nitrogen monoxide
Explanation:
We'll begin by calculating the number of mole in 6.75 g of NH₃. This can be obtained as follow:
Mass of NH₃ = 6.75 g
Molar mass of NH₃ = 14 + (3×1)
= 14 + 3
= 17 g/mol
Mole of NH₃ =?
Mole = mass /molar mass
Mole of NH₃ = 6.75 / 17
Mole of NH₃ = 0.397 mole
Next, we shall determine the number of mole of NO produced by the reaction of 0.397 mole of NH₃. This can be obtained as follow:
4NH₃ + 5O₂ —> 4NO + 6H₂O
From the balanced equation above,
4 moles of NH₃ reacted to produce 4 moles of NO.
Therefore, 0.397 mole of NH₃ will also react to produce 0.397 mole of NO.
Finally, we shall determine the mass of 0.397 mole of NO. This can be obtained as follow:
Mole of NO = 0.397 mole
Molar mass of NO = 14 + 16 = 30 g/mol
Mass of NO =?
Mass = mole × molar mass
Mass of NO = 0.397 × 30
Mass of NO = 11.9 g
Thus, the mass of NO produced is 11.9 g