0.83 m/s seems the correct answer, hope it helps
Table Giving Answer
Element Atomic mass % Amount
Mg_24 24 79 18.96
Mg_25 25 10 2.5
Mg_26 26 11 2.86
Total 24.32
Discussion
The method of calculation for this table, which was done in Excel (a spread sheet) is shown below. Assume that there is 100 grams of material of "pure" magnesium. What is it's mass?
<em><u>Sample Calculation</u></em>
The the sample atomic mass = 24
Mass = % * sample atomic mass
Mass = 79% * 24
Mass = (79/100) * 24
Mass = 18.96
<em><u>Note</u></em>
The other two elements are found exactly the same as the sample calculation.
Then all you do is add the 3 masses together.
Answer
The mass of Mg to 1 decimal place is 24.3 <<<< Answer.
Answer:
The answer to your question is Argon
Explanation:
Electron configuration given 1s² 2s² 2p⁶ 3s² 3p⁶
To find the element whose electron configuration is given, we can do it by two methods.
Number 1. Sum all the exponents the result will give you the atomic number of the element.
2 + 2 + 6 + 2 + 6 = 18
The element with an atomic number of 18 is Argon.
Number 2. Look at the last terms of the electronic configuration
3s² 3p⁶
Number three indicates that this element is in the third period in the periodic table.
Sum the exponents 2 + 6 = 8
Number 8 indicates that this element is the number 8 of that period without considering the transition elements.
The element with these characteristics is Argon.
Here, we should use combined gas law which can be derived from combined gas law, “PV=nRT”. Rearranging, we can get PV/T=nR. Then we can set the two states in the problem together to get
P1V1/T1 = P2V2/T2
Then just plug in and solve algebraically.
Hope this helps