Answer:
z = 0.8 (approx)
Explanation:
given,
Amplitude of 1 GHz incident wave in air = 20 V/m
Water has,
μr = 1
at 1 GHz, r = 80 and σ = 1 S/m.
depth of water when amplitude is down to 1 μV/m
Intrinsic impedance of air = 120 π Ω
Intrinsic impedance of water = 
Using equation to solve the problem

E(z) is the amplitude under water at z depth
E_o is the amplitude of wave on the surface of water
z is the depth under water



now ,


taking ln both side
21.07 x z = 16.81
z = 0.797
z = 0.8 (approx)
Albert Einstein came up with the theory of general relativity to explain the law of gravity, whilst Newton's three laws of gravity is universal. To understand this further, it's best to understand it in scientific terms.
The weird thing about science is that words that are used in a colloquial sense may have a completely opposite definition in scientific terms.
A law in science is a constant and invariable statement that is universal. Wherever you may be in the universe, Newton's three laws of gravity will always be applied.
The word "theory" doesn't imply conjecture or an idea someone made up after a night of drinking. In science, a theory is the highest level of certainty behind mathematical proof -- which isn't even a part of science, obviously. A theory has to be substantiated by all available evidence and contradicted by none. All theories also have to have to be falsifiable. For this reason, theories can never be proven. Einstein's theory of general relativity has great predictive power, but in some cases, the predictions aren't always constant. Theories are often revised to fit new available evidence.
Answer:
a) I = 464 kg m², b) K = 631 .6 J, c) v = 8.25 m / s
Explanation:
a) the moment of inertia of point particles is
I = ∑ m_i r_i²
in this case
I = 8 5² + 3 (-2) ² + 7 (-6) ²
I = 464 kg m²
b) The kinetic energy is
K = ½ I w²
K = ½ 464 1.65²
K = 631 .6 J
c) linear and angular velocity are related
v = w r
v = 1.65 5
v = 8.25 m / s
<h3>Answer</h3>
(A) Resistance is directly related to length.
<h3>Explanation</h3>
Formula for resistance
R = p(length) / A
where R = resistance
p = resistivity(material of wire)
A = cross sectional area
So it can be seen that resistance depends upon 3 factors that are length of wire , resistivity of wire and the cross sectional area of the wire.
If two of the factors, resistivity and cross sectional area, are kept constant then the resistance is directly proportional to the length of wire.
<h3> R ∝ length</h3>
This means that the resistance of the wire increases with the increase in length of the wire and decreases with the decrease of length of the wire.
It would be option C. It rotates, or spins, on its axis, but it revolves around the sun.