To solve this problem we must resort to the Work Theorem, internal energy and Heat transfer. Summarized in the first law of thermodynamics.

Where,
Q = Heat
U = Internal Energy
By reference system and nomenclature we know that the work done ON the system is taken negative and the heat extracted is also considered negative, therefore
Work is done ON the system
Heat is extracted FROM the system
Therefore the value of the Work done on the system is -158.0J
Answer:

Given:
Radius of ball bearing (r) = 1.5 mm = 0.15 cm
Density of iron (ρ) = 7.85 g/cm³
Density of glycerine (σ) = 1.25 g/cm³
Terminal velocity (v) = 2.25 cm/s
Acceleration due to gravity (g) = 980.6 cm/s²
To Find:
Viscosity of glycerine (
)
Explanation:


Substituting values of r, ρ, σ, v & g in the equation:






Answer:
14,700 N
Explanation:
The hyppo is standing completely submerged on the bottom of the lake. Since it is still, it means that the net force acting on it is zero: so, the weight of the hyppo (W), pushing downward, is balanced by the upward normal force, N:
(1)
the weight of the hyppo is

where m is the hyppo's mass and g is the gravitational acceleration; therefore, solving eq.(1) for N, we find

The inner planets are rocky and have diameters of less than 13,000 kilometers. The outer planets include Jupiter, Saturn, Uranus, and Neptune. The smaller, inner planets include Mercury, Venus, Earth, and Mars. Inner planet's atmosphere is thin. (Mercury has no atmosphere). Outer Planets: Outer planets' atmosphere is very thick. The four inner planets, Mercury, Venus, Earth, and Mars, are warmer than the outer gas giants. However, the temperature of the planets does not follow a linear path from the Sun.
Hope this helps!
Please give Brainliest!
Answer:
the answer is a because I saw it in a syllabus