The impulse J is equal to the magnitude of the force applied to the cannonball times the time it is applied:

But the impulse is also equal to the change in momentum of the cannonball:

If we put the two equations together, we find

And since we know the magnitude of the average force and the time, we can calculate the change in momentum:
Displacement from the center line for minimum intensity is 1.35 mm , width of the slit is 0.75 so Wavelength of the light is 506.25.
<h3>How to find Wavelength of the light?</h3>
When a wave is bent by an obstruction whose dimensions are similar to the wavelength, diffraction is observed. We can disregard the effects of extremes because the Fraunhofer diffraction is the most straightforward scenario and the obstacle is a long, narrow slit.
This is a straightforward situation in which we can apply the
Fraunhofer single slit diffraction equation:
y = mλD/a
Where:
y = Displacement from the center line for minimum intensity = 1.35 mm
λ = wavelength of the light.
D = distance
a = width of the slit = 0.75
m = order number = 1
Solving for λ
λ = y + a/ mD
Changing the information that the issue has provided:
λ = 1.35 * 10^-3 + 0.75 * 10^-3 / 1*2
=5.0625 *10^-7 = 506.25
so
Wavelength of the light 506.25.
To learn more about Wavelength of the light refer to:
brainly.com/question/15413360
#SPJ4
Time period of any moon of Jupiter is given by

from above formula we can say that mass of Jupiter is given by

now for part a)

T = 1.77 day = 152928 seconds
now by above formula



Part B)

T = 3.55 day = 306720 seconds
now by above formula



Part c)

T = 7.16 day = 618624 seconds
now by above formula



PART D)

T = 16.7 day = 1442880 seconds
now by above formula



<span>Pitch and frequency are more or less the same thing - high pitch = high frequency.
The freqency of vibration of a string f = 1/length (L) so as length decreases the frequency increases.</span>