1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Andreyy89
3 years ago
10

Suppose that a person gets hit by a bus moving at 30 mi/h with a 58,000 lbs of force in the direction of motion. If the mass of

the bus is 40,000 lbs and persons is 150 lbs and if the impact lasts only 0.007 seconds.
A. Determine the speed of the person at the end of the impact and convert to mi/h.

B. What is the expected speed of the person at the end of the impact and does your finding agree with that expectation?
Physics
1 answer:
alexandr402 [8]3 years ago
3 0

The impulse of a force is due to the change in the motion of an object

A. The persons speed after impact is approximately 59.38 mi/h

B. The expected speed is <u>29.89 mi/h</u> which is less than the findings

Reason:

Known parameters are;

The speed of the bus, v = 30 mi/h

The force with which the person was hit, F = 58,000 lbs

Mass of the bus, M = 40,000 lbs

Mass of the person, m = 150 lbs

Duration of the impact, Δt = 0.007 seconds

A. The speed of the person at the end of the impact, <em>v</em>, is given as follows;

The impulse of the force = F × Δt = m × Δv

For the person, we get;

58,000 lbf ≈ 1866094.816 lb·ft./s²

58,000 lbf × 0.007 s = 150 lbs × Δv

1,866,094.816 lb·ft./s²

\Delta v = \dfrac{1,866,094.816\ lbs \times 0.007 \, s}{150 \, lbs} \approx  87.084  \ ft./s

Δv = v₂ - v₁

The initial speed of the person at the instant, can be as v₁ = 0

The final speed, v₂ = Δv - v₁

∴ v₂ ≈  87.084 ft./s - 0 = 87.084 ft./s

≈ <u>87.084 ft./s</u>

<u />v_2 \approx \dfrac{87.084 \ ft./s}{y} \times\dfrac{1 \ mi}{5280 \ ft.} \times \dfrac{3,600 \ s}{1 \, hour} \approx 59.38 \ mi/h<u />

The speed of the person at the end of the impact, v₂ ≈ <u>59.38 mi/h</u>

B. Where the momentum is conserved, we have;

m₁·v₁ + m₂v₂ = (m₁ + m₂)·v

v = \dfrac{m_1 \cdot v_1 + m_2 \cdot v_2}{m_2 + m_1}

v = \dfrac{40,000 \times 30  + 150 \times 0}{40,000 + 150} \approx 29.89

The expected speed of the person at the end of the impact is 29.89 mi/h, and therefore, <u>the findings does not agree with the expectation</u>

Learn more here:

brainly.com/question/18326789

You might be interested in
RC time constant circuit if R 50 KOC-21 a TOSS c. 1.05 s . what is the expected RC value b. 10.55 d. 0.105 s
Afina-wow [57]

Answer:

Time constant of RC circuit is 0.105 seconds.

Explanation:

It is given that,

Resistance, R=50\ K\Omega=5\times 10^4\ \Omega

Capacitance, C=2.1\ \mu F=2.1\times 10^{-6}\ F

We need to find the expected time constant for this RC circuit. It can be calculated as :

\tau=R\times C

\tau=5\times 10^4\times 2.1\times 10^{-6}

\tau=0.105\ s

So, the time constant for this RC circuit is 0.105 seconds. Hence, this is the required solution.

7 0
3 years ago
Trumpeter A holds a B-flat note on the trumpet for a long time. Person C is running towards the trumpeter at a constant velocity
Vikki [24]
You didn't mention it, but the trumpeter herself has to be standing still.

<span>Person C, the one running towards the trumpeter, hears a pitch
that is higher than B-flat.  (A)

Person B, the one running away from the trumpeter, hears a pitch
that is lower than B-flat.

Person D, the one standing still the whole time, hears the B-flat.</span>
5 0
3 years ago
Read 2 more answers
4.5 billion km, the average separation between the sun and Neptune (report answer in hours). How long does it take light to trav
Liula [17]

Answer:

t = 4.17 hours

Explanation:

given,

The distance between Sun and Neptune, d = 4.5 billion Km

                                                                         = 4.5 x 10⁹ Km

                                                                          = 4.5 x 10¹¹ m

The velocity of light, c = 3 x 10⁸ m/s

The velocity is always equal to displacement by the time.

                                           <em>V = d / t    m/s</em>

∴                                           t = d / V

                                               = 4.5 x 10¹¹ m / 3 x 10⁸ m/s

                                               = 15,000 s

                                               = 4.17 h

Hence, the time taken by the light rays to reach the Neptune is, t = 4.17 h

4 0
3 years ago
⦁ Match the following terms:
ki77a [65]

Answer:

Mass number - ⦁ The number of protons and neutrons in the nucleus of an atom.

Isotopes - ⦁ Atoms with the same number of protons, but different number of neutrons.

Nitrogen - ⦁ The name of the element with atomic number 7.

Atomic number - ⦁ The number of protons in the nucleus of an atom.

4 0
3 years ago
Please help me with this
amm1812

the answer might be 2.3 kilos

3 0
3 years ago
Other questions:
  • Kirchhoff's loop rule for circuit analysis is an expression of which of the following? Conservation of charge Conservation of en
    6·1 answer
  • A crescent moon appears when
    15·1 answer
  • Andy took a bus and then walked from his home to downtown.
    14·1 answer
  • A nail in a pine board stops a 4.9-N hammer head from an initial downward velocity of 3.2 m/s in a distance of 0.45 cm. In addit
    11·1 answer
  • Planet that is one astronomical unit from the sun
    6·1 answer
  • Calculate the effective value of g, the acceleration of gravity, at 6700 m , above the Earth's surface. g
    11·1 answer
  • An atomic mass unit is equal to
    5·2 answers
  • A car travels for 50mph for 5 hours, then for 30mph for another 3 hours in the same direction. What is the average speed the mot
    10·1 answer
  • Explain any 3 alternating ways of producing electricity​
    7·1 answer
  • Which two statements are true of electromagnetic waves?
    12·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!