Glittering in the light
Opaque, not transparent
Light to the hold
D-block element
Sodium. Oxygen is electronegative and hece pulls bonding electron towards oxygen atom, creating a partial negative charge on the oxygen atom. As unlike charges attract, it is then attracted to the positively charged sodium ion.
Answer:
196J, but C. at 200 J comes close.
Explanation:
Potential energy due to gravity is given by:
PEgrav = mass • g • height
where g is the acceleration due to gravity. We'll use 9.8 N/kg (on Earth).
PEgrav = mass • g • height
PEgrav = (2 kg) • (9.8 N/kg) • (10 m)
PEgrav = 196 N*m
1 N*m = 1 Joule
PEgrav = 196 J
C. at 200 J comes close. The solution probably used a value of g equal to 10 N/kg)
Corals will continue to expel algae from their cells if global warming continues, in order to avoid poisonous buildup. Corals will perish as a result of this. The algae are not protected and cannot perform photosynthesis without the presence of corals. The algae will also perish as a result of this.
This technique can be used to make pure crystals of a soluble salt.
The burette is filled with hydrochloric acid.
A known quantity of alkali (say 50 cm3 sodium hydroxide)
is released from a pipette into the conical flask.
The tap on the burette is turned open to allow
the acid to be added drop by drop into the alkali.
The alkali contains an indicator (phenolphthalein)
which is pink in an alkali and colorless in an <span>acid.
</span>
When enough acid has been added to neutralize
the alkali, the indicator changes from
pink to colorless. This is the end point of the titration.
The titration<span> can be repeated using the </span><span>same amounts
</span><span>of </span>acid<span> and </span>alkali<span> but </span>without<span> the </span>indicator.
<span>Pure salt</span> crystals<span> which are </span>free<span> from </span><span>indicator
</span><span>can then be crystallized </span><span> from the </span>neutral<span> solution.</span>