To solve the problem it is necessary to apply the equations related to the Poiseuilles laminar flow law, with which the stationary laminar flow ΦV of an incompressible and uniformly viscous liquid (also called Newtonian fluid) can be determined through a cylindrical tube of constant circular section. Mathematically this can be expressed:

Where:
are the viscosities of the concrete before and after the increase
l = Length of the vessel
= Radio of the vessel before and after the increase
= Change in the pressure
The rates of flow before and after he increase
Our values are given as:
10 times her resting rate
95% of its normal value
Increase of 50%
Plugging known information to get







Therefore the factor of average radio of her blood vessels increased is 1.589 the initial factor after the increase.
The maximum pressure variations the human ear can withstand above and below atmospheric pressure is around 30 pa. the normal atmospheric pressure is around 101325 pa. hence the variation in the maximum pressure for human ear is very small as compared to the atmospheric pressure. if the ear is exposed to a pressure greater than this , it can cause permanent damage to the ear.
I think the answer would be c