Answer:
<em>k = 25.18 N/m</em>
Explanation:
<u>Simple Harmonic Oscillator</u>
It consists of a weight attached to one end of a spring being allowed to move forth and back.
If m is the mass of the weight and k is the constant of the spring, the period of the oscillation is given by:

If the period is known, we can find the value of the constant by solving for k:

Substituting the given values m=5 Kg and T=2.8 seconds:

k = 25.18 N/m
Answer:
(a) -472.305 J
(b) 1 m
Explanation:
(a)
Change in mechanical energy equals change in kinetic energy
Kinetic energy is given by
Initial kinetic energy is 
Since he finally comes to rest, final kinetic energy is zero because the final velocity is zero
Change in kinetic energy is given by final kinetic energy- initial kinetic energy hence
0-472.305 J=-472.305 J
(b)
From fundamental kinematic equation

Where v and u are final and initial velocities respectively, a is acceleration, s is distance
Making s the subject we obtain
but a=\mu g hence

Answer:
4 Ohms
Explanation
(This is seriously not as hard as it looks :)
You only need two types of calculations:
- replace two resistances, say, R1 and R2, connected in a series by a single one R. In this case the new R is a sum of the two:

- replace two resistances that are connected in parallel. In that case:

I am attaching a drawing showing the process of stepwise replacement of two resistances at a time (am using rectangles to represent a resistance). The left-most image shows the starting point, just a little bit "warped" to see it better. The two resistances (6 Ohm next to each other) are in parallel and are replaced by a single resistance (3 Ohm, see formula above) in the top middle image. Next, the two resistances (9 and 3 Ohm) are nicely in series, so they can be replaced by their sum, which is what happened going to the top right image. Finally we have two resistances in parallel and they can be replaced by a single, final, resistance as shown in the bottom right image. That (4 Ohms) is the <em>equivalent resistance</em> of the original circuit.
Using these two transformations you will be able to solve step by step any problem like this, no matter how complex.