In NH4OH, the compounds that make it up are NH4+ and OH-
Therefore N exists in the ammonium form.
In the ammonium ion 4H atoms are connected to N.
N is more electronegative than H, therefore when H bonds to N, H is the more positive atom therefore each H has a charge of +1, since there are 4 H atoms the charge contributed by the 4H atoms are +1 * 4 = +4
the overall charge of NH4 is +1
Charge of N (+) +4 = +1
Charge of N = +1 - 4
Therefore oxidation state of N in NH4 is = -3
Answer:
Hello! <em>Jaesuk~Sakai Here!! UwU</em>
Explanation:
<em>my fav cod map, is the one with the deck near the ocean ^^</em>
<em>ps: u do know which one i'm talking about, right? </em>
<em />
<em>pls help me out if u know wat map i'm talking about so i can edit this answer for u ^^</em>
According to the law of conservation of mass, what is the same on both sides of a balanced chemical equation?
A. the volume of the substances
B. the subscripts
C. the total mass of atoms
D. the coefficients
Answer:
A balanced equation demonstrates the conservation of mass by having the same number of each type of atom on both sides of the arrow.
Explanation:
Every chemical equation adheres to the law of conservation of mass, which states that matter cannot be created or destroyed. ... Use coefficients of products and reactants to balance the number of atoms of an element on both sides of a chemical equation.
Consider the balanced equation for the combustion of methane.
CH
4
+
2O
2
→
CO
2
+
2H
2
O
All balanced chemical equations must have the same number of each type of atom on both sides of the arrow.
In this equation, we have 1
C
atom, 4
H
atoms, and 4
O
atoms on each side of the arrow.
The number of atoms does not change, so the total mass of all the atoms is the same before and after the reaction. Mass is conserved.
Here is a video that discusses the importance of balancing a chemical equation.