Answer:
0.0845 M
Explanation:
First we <u>convert 4.27 grams of potassium iodide into moles</u>, using its <em>molar mass</em>:
- Molar Mass of KI = 166 g/mol
- 4.27 g ÷ 166 g/mol = 0.0257 mol
Now we <u>calculate the molarity of the solution</u>, using <em>the number of moles and the given volume</em>:
- Molarity = moles / liters
- Molarity = 0.0257 mol / 0.304 L = 0.0845 M
Answer:
Earthquakes are measured using instruments called seismometers, that detect the vibrations caused by seismic waves as they travel through the crust. Also, laser beams can be used
Explanation:
<span>In a salt solution (a solution of water (H2O) and Salt, chemical formula NaCl), the positively charged Hydrogen atoms from water form bonds with the negatively charged Chloride atoms of Salt (which is the formulate NaCl), and the negatively charged oxygen atom of water (one atom per water molecule) form a bond with the positively charged Sodium ions (Na) of salt.</span>
Answer:
the answer is the swecond option
Explanation:
Its b ur well come
Answer:
The correct answer is -
1. a) The bubbles will shrink, some may vanish.
2. a) Can A will make a louder and stronger fizz than can B.
Explanation:
In the first question, it is given that the bottle is not opened and therefore, squeezing the bottle filled with a carbonated drink will increase the pressure on the carbonated liquid which forces the bubbles to dissolve or displace or vanish as it moves to empty space.
Thus, the correct answer would be - The bubbles will shrink, some may vanish
In the second question, there are two different conditions for two different unopened cans of carbonated water that are different temperatures one at the garage with higher temperature and one in the fridge at low temperature. As it is known that higher the temperature less will be solubility of gas in liquid so gas in can A will be less soluble which means it has more gas and it will make louder and stronger fizz than B which was stored at low temperature.
thus, the correct answer would be - Can A will make a louder and stronger fizz than can B.