To develop this problem it is necessary to apply the concepts related to Wavelength, The relationship between speed, voltage and linear density as well as frequency. By definition the speed as a function of the tension and the linear density is given by

Where,
T = Tension
Linear density
Our data are given by
Tension , T = 70 N
Linear density , 
Amplitude , A = 7 cm = 0.07 m
Period , t = 0.35 s
Replacing our values,



Speed can also be expressed as

Re-arrange to find \lambda

Where,
f = Frequency,
Which is also described in function of the Period as,



Therefore replacing to find 


Therefore the wavelength of the waves created in the string is 3.49m
Answer:
Explanation:
radius of hoop and the radius of disk is same = R
Let the mass of hoop is M and the mass of disk is M'.
As they reach the bottom of teh surface in same time so they travel equal distance thus, they have same acceleration.
The acceleration is given by

As the acceleration is same so that the moment of inertia is also same.
Moment of inertia of disk = moment of inertia of hoop
1/2 x mass of disk x R² = mass of hoop x R²
So, mass of disk = 2 x mass of hoop
Option (c) is correct.
Answer:
9.17 m/s^2
Explanation:
Formula for force is given by
F = m*a
where F is the force in newton
m is the mass of body in KG
and
a is the acceleration of body on m/s^2
_______________________________________________
Given
F = 11,000
mass = 1,200 Kg
we have to find value of acceleration
using
F = m*a
11,000 = 1200*a
=> a = 11,000 /1200 = 9.17
Thus, the acceleration of a car is 9.17 meter per second square
The strength of the electric field on the point charge at this distance will be 4000 V/m.
<h3>What is the strength of the electric field?</h3>
The strength of the electric field is the ratio of electric force per unit charge.
The given data in the problem is;
Qis the unit charge = 4.0 × 10⁻⁶ C
E is the strength of the electric field
R is the distance from point charge = 3 m
The strength of the electric field is;

Hence, the strength of the electric field on the point charge at this distance will be 4000 V/m.
To learn more about the strength of the electric field refer to the link;
brainly.com/question/15170044
#SPJ1
0.345 m.
<h3>Explanation</h3>
The wavelength is the distance that the wave travels in each cycle. The wave travels 345 meters in each second. Let the wavelength of this wave be
. That's the distance the wave travels in one cycle.
The frequency of the sound wave is 1 000 Hz, meaning that there are 1 000 cycles in each second. The wave travels a distance of 1 000 wavelengths in one second. That would be a distance of
.
From the speed of the wave, the wave travels 345 meters in one second. In other words,
.
.
To generalize:
,
where
wavelength of the wave,
the speed of the wave, and
the frequency of the wave.