Answer: The number to the left of AC should be 6.
Explanation: The balanced chemical reaction is one in which the number of atoms of each element on the reactant side must be equal to the number of atoms on product side.
The given equation
is unbalanced as the atoms on the reactant side are not same as number of atoms on product side. This equation is called as skeletal equation.
The balanced chemical equation is :

Thus the number to the left of AC is 6.
Nuclear decay is the decay of atoms on the atomic scale. “Radioactive decay is the process by which an unstable atomic nucleus loses energy by radiation. A material containing unstable nuclei is considered radioactive. Three of the most common types of decay are alpha decay, beta decay, and gamma decay, all of which involve emitting one or more particles or photons.”
Explanation:
Greenhouse gases are gases in Earth's atmosphere that trap heat. They let sunlight pass through the atmosphere, but they prevent the heat that the sunlight brings from leaving the atmosphere.
Answer:
24.9 L Ar
General Formulas and Concepts:
<u>Atomic Structure</u>
- Reading a Periodic Table
- Moles
- STP (Standard Conditions for Temperature and Pressure) = 22.4 L per mole at 1 atm, 273 K
<u>Aqueous Solutions</u>
<u>Stoichiometry</u>
- Using Dimensional Analysis
Explanation:
<u>Step 1: Define</u>
[Given] 40.0 g Ar
[Solve] L Ar
<u>Step 2: Identify Conversions</u>
[PT] Molar Mass of Ar - 39.95 g/mol
[STP] 22.4 L = 1 mol
<u>Step 3: Convert</u>
- [DA] Set up:

- [DA] Divide/Multiply [Cancel out units]:

<u>Step 4: Check</u>
<em>Follow sig fig rules and round. We are given 3 sig figs.</em>
24.9235 L Ar ≈ 24.9 L Ar
Answer:
- The abundance of 107Ag is 51.5%.
- The abundance of 109Ag is 48.5%.
Explanation:
The <em>average atomic mass</em> of silver can be expressed as:
107.87 = 106.90 * A1 + 108.90 * A2
Where A1 is the abundance of 107Ag and A2 of 109Ag.
Assuming those two isotopes are the only one stables, we can use the equation:
A1 + A2 = 1.0
So now we have a system of two equations with two unknowns, and what's left is algebra.
First we<u> use the second equation to express A1 in terms of A2</u>:
A1 = 1.0 - A2
We <u>replace A1 in the first equation</u>:
107.87 = 106.90 * A1 + 108.90 * A2
107.87 = 106.90 * (1.0-A2) + 108.90 * A2
107.87 = 106.90 - 106.90*A2 + 108.90*A2
107.87 = 106.90 + 2*A2
2*A2 = 0.97
A2 = 0.485
So the abundance of 109Ag is (0.485*100%) 48.5%.
We <u>use the value of A2 to calculate A1 in the second equation</u>:
A1 + A2 = 1.0
A1 + 0.485 = 1.0
A1 = 0.515
So the abundance of 107Ag is 51.5%.