Answer:
Option B. N2(g) + 3H2(g) → 2NH3(g)
Explanation:
When nitrogen react with hydrogen, they form a product as shown below:
N2+ H2 → NH3
We need to balance the equation. This is illustrated below:
There are 2 atoms of nitrogen on the left side and 1 atom on the right side. To balance it, put 2 in front of NH3 as shown below:
N2+ H2 → 2NH3
Now, There are a total of 6 atoms of Hydrogen on the right side and 2 atoms on the left side side. This can be balanced by putting 3 in front of H2 as shown below:
N2+ 3H2 → 2NH3
Now we see clearly that the equation is balanced as we have equal numbers of atoms of N and H on both sides of the equation
Answer:
a= -1.2 m/s^2
Vi= 6.5 m/s
Vf= 0 m/s
t= 0-6.5/-1.2= <u>5.45 Sec</u>
Explanation:
Answer:
net force
Explanation:
net force is the total amount of force exerted on an object.
The surface is frictionless, so there is no frictional force acting on the ball. There are no other forces acting on the ball in the horizontal direction, so it's a uniform motion with constant speed. Therefore, the velocity of the ball will remain the same for the entire duration of the motion, and so after 5 seconds the velocity is still 15 m/s.
<h2>
Answer:</h2><h2>
The acceleration of the meteoroid due to the gravitational force exerted by the planet = 12.12 m/
</h2>
Explanation:
A meteoroid is in a circular orbit 600 km above the surface of a distant planet.
Mass of the planet = mass of earth = 5.972 x
Kg
Radius of the earth = 90% of earth radius = 90% 6370 = 5733 km
The acceleration of the meteoroid due to the gravitational force exerted by the planet = ?
By formula, g = 
where g is the acceleration due to the gravity
G is the universal gravitational constant = 6.67 x

M is the mass of the planet
r is the radius of the planet
Substituting the values, we get
g = 
g = 12.12 m/
The acceleration of the meteoroid due to the gravitational force exerted by the planet = 12.12 m/