The problem ask to calculate the bullet's flight time and the bullet's speed as it left the barrel. So base on the problem, the answer would be that the flight time is 0.076 seconds and the speed of the bullet is 657.9 m/s. I hope you are satisfied with my answer and feel free to ask for more if you have questions and further clarifications.
Answer:
A) 3.13 m/s
B) 5.34 N
C) W = 26.9 J
Explanation:
We are told that the position as a function of time is given by;
x(t) = αt² + βt³
Where;
α = 0.210 m/s² and β = 2.04×10^(−2) m/s³ = 0.0204 m/s³
Thus;
x(t) = 0.21t² + 0.0204t³
A) Velocity is gotten from the derivative of the displacement.
Thus;
v(t) = x'(t) = 2(0.21t) + 3(0.0204t²)
v(t) = 0.42t + 0.0612t²
v(4.5) = 0.42(4.5) + 0.0612(4.5)²
v(4.5) = 3.1293 m/s ≈ 3.13 m/s
B) acceleration is gotten from the derivative of the velocity
a(t) = v'(t) = 0.42 + 2(0.0612t)
a(4.5) = 0.42 + 2(0.0612 × 4.5)
a(4.5) = 0.9708 m/s²
Force = ma = 5.5 × 0.9708
F = 5.3394 N ≈ 5.34 N
C) Since no friction, work done is kinetic energy.
Thus;
W = ½mv²
W = ½ × 5.5 × 3.1293²
W = 26.9 J
Answer:
The false statement is in option 'd': The center of mass of an object must lie within the object.
Explanation:
Center of mass is a theoretical point in a system of particles where the whole mass of the system is assumed to be concentrated.
Mathematically the position vector of center of mass is defined as

where,
is the position vector of the mass dm.
As we can see for homogenous symmetrical objects such as a sphere,cube,disc the center of mass is located at the centroid of the shapes itself but in many shapes it is located outside the body also.
Examples of shapes in which center of mass is located outside the body:
1) Horseshoe shaped body.
2) A thin ring.
In many cases we can make shapes of bodies whose center of mass lies outside the body.
Neglecting friction and air resistance, the first hill must be built 4 times higher than it is now.
Answer:
x(t) = - 6 cos 2t
Explanation:
Force of spring = - kx
k= spring constant
x= distance traveled by compressing
But force = mass × acceleration
==> Force = m × d²x/dt²
===> md²x/dt² = -kx
==> md²x/dt² + kx=0 ------------------------(1)
Now Again, by Hook's law
Force = -kx
==> 960=-k × 400
==> -k =960 /4 =240 N/m
ignoring -ve sign k= 240 N/m
Put given data in eq (1)
We get
60d²x/dt² + 240x=0
==> d²x/dt² + 4x=0
General solution for this differential eq is;
x(t) = A cos 2t + B sin 2t ------------------------(2)
Now initially
position of mass spring
at time = 0 sec
x (0) = 0 m
initial velocity v= = dx/dt= 6m/s
from (2) we have;
dx/dt= -2Asin 2t +2B cost 2t = v(t) --- (3)
put t =0 and dx/dt = v(0) = -6 we get;
-2A sin 2(0)+2Bcos(0) =-6
==> 2B = -6
B= -3
Putting B = 3 in eq (2) and ignoring first term (because it is not possible to find value of A with given initial conditions) - we get
x(t) = - 6 cos 2t
==>