Answer:
the number of additional car lengths approximately it takes the sleepy driver to stop compared to the alert driver is 15
Explanation:
Given that;
speed of car V = 120 km/h = 33.3333 m/s
Reaction time of an alert driver = 0.8 sec
Reaction time of an alert driver = 3 sec
extra time taken by sleepy driver over an alert driver = 3 - 0.8 = 2.2 sec
now, extra distance that car will travel in case of sleepy driver will be'
S_d = V × 2.2 sec
S_d = 33.3333 m/s × 2.2 sec
S_d = 73.3333 m
hence, number of car of additional car length n will be;
n = S_n / car length
n = 73.3333 m / 5m
n = 14.666 ≈ 15
Therefore, the number of additional car lengths approximately it takes the sleepy driver to stop compared to the alert driver is 15
Answer:
D. has no overall force acting on it.
Explanation:
Why?
Because in a straight line at the constant speed means the car moving in the same velocity, which is not acceleration neither deceleration, and it cannot be on a downhill slope. So the correct answer is
<h3>→ D. has no overall force acting on it.</h3>
Psychology on Egenuity Oct 5th 2018 says answer is C
One should check the battery every week.
A battery if not maintained properly can cause it to die earlier or get damaged. The reasons why should the battery be checked regularly is that due to improper management of the battery and also the weather conditions, the battery usually gets corroded easily and the battery won't be able to work properly.
The connections must be checked properly so that the battery gets charged properly and should not die while driving.
Answer:
8.27°
Explanation:
To angle difference will be determined by the difference in the displacement of the springs, produced by the weight of the center of mass of the rod.
![d=y_1-y_2=\frac{F_1}{k_1}-\frac{F_2}{k_2}=\frac{0.5mg}{31N/m}-\frac{0.5mg}{63N/m}\\\\d=0.5(1.6kg)(9.8m/s^2)[\frac{1}{31N/m}-\frac{1}{63N/m}]=0.128m](https://tex.z-dn.net/?f=d%3Dy_1-y_2%3D%5Cfrac%7BF_1%7D%7Bk_1%7D-%5Cfrac%7BF_2%7D%7Bk_2%7D%3D%5Cfrac%7B0.5mg%7D%7B31N%2Fm%7D-%5Cfrac%7B0.5mg%7D%7B63N%2Fm%7D%5C%5C%5C%5Cd%3D0.5%281.6kg%29%289.8m%2Fs%5E2%29%5B%5Cfrac%7B1%7D%7B31N%2Fm%7D-%5Cfrac%7B1%7D%7B63N%2Fm%7D%5D%3D0.128m)
by a simple trigonometric relation you obtain that the angle:

hence, the angle between the rod and the horizontal is 8.27°