Products are copper+ aluminium chloride
reactants are aluminium+copper chloride
2 C₃H₇OH (l) + 9 O₂ (g) → 6 CO₂ (g) + 8 H₂O (g)
Explanation:
To balance the chemical equation the number of atoms of each element entering the reaction have to be equal to the number of atoms of each element leaving the reaction, in order to conserve the mass.
Bellow we have the balanced chemical equation of the complete combustion of C₃H₇OH:
C₃H₇OH (l) + (9/2) O₂ (g) → 3 CO₂ (g) + 4 H₂O (g)
to have integer coefficients we multiply the reaction with 2:
2 C₃H₇OH (l) + 9 O₂ (g) → 6 CO₂ (g) + 8 H₂O (g)
where:
(l) - liquid
(g) - gaseous
Learn more about:
combustion reaction
brainly.com/question/9425444
balancing chemical equations
brainly.com/question/13941483
#learnwithBrainly
Answer:
The nuclear charge increases from boron to carbon, but there is no additional shielding( that is no additional shells).
Explanation:
First of all, we must know the electron configuration of carbon and boron.
Boron- 1s2 2s2 2p1
Carbon- 1s2 2s2 2p2
Moving from boron to carbon, the effective nuclear charge increases without a corresponding increase in the number of shells. Remember that shielding increases with increase in the number of intervening shells between the outermost electron and the nucleus. Since there isn't an increase in shells, boron experience a lower screening effect.
From
Zeff= Z- S
The Z for carbon is 6 while for boron is 5 even though both have the same number of screening electron S(4 screening electrons). Hence it is expected the Zeff(effective nuclear charge) for boron will be less than that of carbon.
Answer:
See below
Step-by-step explanation:
You won't see much happening. The solution is saturated, so the salt will fall to the bottom of the container and sit there. It will not dissolve.
However, at the atomic level, Na⁺ and Cl⁻ ions are being pulled from the surface of the crystals and going into solution as hydrated ions. At other places, Na⁺ and Cl⁻ ions are returning to the surface of the crystals.
The process is
NaCl(s) ⇌ Na⁺(aq) + Cl⁻(aq)
The rates of the forward and reverse processes are equal, so you see no net change.
Answer:
0.0702J/g°C the specific heat capacity of the metal.
Explanation:m

where,
Q = heat absorbed by metal = 186.75 J
= Mass of metal= 19 g
= Initial temperature of metal = 
=Final temperature of metal = 
= specific heat of metal= ?



0.0702J/g°C the specific heat capacity of the metal.