A noncontinuous loop that prevents the flow of current is a(n) <u>open</u> circuit.
Answer:
Magnitude of electric field = E = q/Aε0
Explanation:
Consider plates are placed at a distance of d. As given in the question the charge stored on the plates have magnitude q and given by:
q = CV
And
V = q/C ……. (i)
The capacitance is given by the following equation:
C = Aε0/d ……. (ii)
Put equation (ii) in (i)
,
V = qd/ Aε0 …..(iii)
The electric field is defined as:
E = V/d …… (iv)
Put equation (iii) in (iv),
E = qd/ Aε0d
E = q/Aε0
Hence, the magnitude of electric field will be q/Aε0 .
Answer:
322 kJ
Explanation:
The work is the energy that a force produces when realizes a displacement. So, for a gas, it occurs when it expands or when it compress.
When the gas expands it realizes work, so the work is positive, when it compress, it's suffering work, so the work is negative.
For a constant pressure, the work can be calcutated by:
W = pxΔV, where W is the work, p is the pressure, and ΔV is the volume variation. To find the work in Joules, the pressure must be in Pascal (1 atm = 101325 Pa), and the volume in m³ (1 L = 0.001 m³), so:
p = 60 atm = 6.08x10⁶ Pa
ΔV = 82.0 - 29.0 = 53 L = 0.053 m³
W = 6.08x10⁶x0.053
W = 322x10³ J
W = 322 kJ
Answer:
Esto se debe a que la soda está más caliente que el hielo, lo que hace que pase por su punto de fusión.
Explanation:
Me enteré de esto durante la clase de ciencias hace un par de años. jajaja
At a constant speed of 5.00 m/s, the speed at which the poodle completes a full revolution is

so that its period is
(where 1 revolution corresponds exactly to 360 degrees). We use this to determine how much of the circular path the poodle traverses in each given time interval with duration
. Denote by
the angle between the velocity vectors (same as the angle subtended by the arc the poodle traverses), then



We can then compute the magnitude of the velocity vector differences
for each time interval by using the law of cosines:


and in turn we find the magnitude of the average acceleration vectors to be

So that takes care of parts A, C, and E. Unfortunately, without knowing the poodle's starting position, it's impossible to tell precisely in what directions each average acceleration vector points.