I hope that the attachment helps you..
Answer:
new atmospheric pressure is 0.9838 ×
Pa
Explanation:
given data
height = 21.6 mm = 0.0216 m
Normal atmospheric pressure = 1.013 ✕ 10^5 Pa
density of mercury = 13.6 g/cm³
to find out
atmospheric pressure
solution
we find first height of mercury when normal pressure that is
pressure p = ρ×g×h
put here value
1.013 ×
= 13.6 × 10³ × 9.81 × h
h = 0.759 m
so change in height Δh = 0.759 - 0.0216
new height H = 0.7374 m
so new pressure = ρ×g×H
put here value
new pressure = 13.6 × 10³ × 9.81 × 0.7374
atmospheric pressure = 98380.9584
so new atmospheric pressure is 0.9838 ×
Pa
The answer is A. Bob (<span>object's length)
</span>
A system that repeats to and from its mean or rest point. that executes harmonic motion. a few examples I've heard of are since the springtime a mass-spring system,a swing, simple pendulum, one more example is a steel ball rolling in a curved is this what you need or do you need three more sentences dish. to get S.H.M a body just displaced away from the resting position and of course then is released. the human body oscillates due to the reinforce that pulls it back do you need anything else answered on this and I'll answer it
Answer:
4.6 kHz
Explanation:
The formula for the Doppler effect allows us to find the frequency of the reflected wave:

where
f is the original frequency of the sound
v is the speed of sound
vs is the speed of the wave source
In this problem, we have
f = 41.2 kHz
v = 330 m/s
vs = 33.0 m/s
Therefore, if we substitute in the equation we find the frequency of the reflected wave:

And the frequency of the beats is equal to the difference between the frequency of the reflected wave and the original frequency:
