Answer:
The velocity is 19.39 m/s
Solution:
As per the question:
Mass, m = 75 kg
Radius, R = 19.2 m
Now,
When the mass is at the top position in the loop, then the necessary centrifugal force is to keep the mass on the path is provided by the gravitational force acting downwards.


where
v = velocity
g = acceleration due to gravity

Answer:first law
Explanation:
it states the a body in motion or rest maintain its state until an external force is acted on it
Answer:
k = 49 N/m
Explanation:
Given that,
Mass, m = 250 g = 0.25 kg
When the mass is attached to the end of the spring, it elongates 5 cm or 0.05 m. We need to find the spring constant. Let it is k.
The force due to mass is balanced by its weight as follows :
mg=kx

So, the spring constant of the spring is 49 N/m.
Answer:
Conductors allow electric charges to move freely
Answer: ![-\frac{1}{2}\times \frac{d[Br^.]}{dt}=+\frac{d[Br_2]}{dt}](https://tex.z-dn.net/?f=-%5Cfrac%7B1%7D%7B2%7D%5Ctimes%20%5Cfrac%7Bd%5BBr%5E.%5D%7D%7Bdt%7D%3D%2B%5Cfrac%7Bd%5BBr_2%5D%7D%7Bdt%7D)
Explanation:
Rate of a reaction is defined as the rate of change of concentration per unit time.
Thus for reaction:

The rate in terms of reactants is given as negative as the concentration of reactants is decreasing with time whereas the rate in terms of products is given as positive as the concentration of products is increasing with time.
![Rate=-\frac{d[Br^.]}{2dt}](https://tex.z-dn.net/?f=Rate%3D-%5Cfrac%7Bd%5BBr%5E.%5D%7D%7B2dt%7D)
or ![Rate=+\frac{d[Br_2]}{dt}](https://tex.z-dn.net/?f=Rate%3D%2B%5Cfrac%7Bd%5BBr_2%5D%7D%7Bdt%7D)
Thus ![-\frac{d[Br^.]}{2dt}=+\frac{d[Br_2]}{dt}](https://tex.z-dn.net/?f=-%5Cfrac%7Bd%5BBr%5E.%5D%7D%7B2dt%7D%3D%2B%5Cfrac%7Bd%5BBr_2%5D%7D%7Bdt%7D)