Answer:
One would need to know how far apart the towns are:
T = SA / 40 time it takes for first cyclist to travel S1
T = SB / 60 time it takes for cyclist B to travel distance S2
SA + SB = S the distance between the towns
SB = 60 / 40 SA = 1.5 SA
SA + 1.5 SA = S
S = 2.5 SA where cyclist travels distance SA
The time will depend on the separation of the towns.
Answer:

Explanation:
We could use the following suvat equation:

where
s is the vertical displacement of the coin
v is its final velocity, when it hits the water
t is the time
g is the acceleration of gravity
Taking upward as positive direction, in this problem we have:
s = -1.2 m

And the coin reaches the water when
t = 1.3 s
Substituting these data, we can find v:

where the negative sign means the direction is downward.
I'm assuming it was to keep the data consistent? The further you are from a heat source the less heat will get to you as the temperature tries to reach equilibrium and the waves start to spread out, so you should keep everything the same distance to get consistent results. I don't have any information so this is just my assumption