What question are you asking?
With the switch open, there's no current in the circuit, and therefore
no voltage drop across any of the dissipative elements (the resistor
or the battery's internal impedance). So the entire battery voltage
appears across the switch, and the voltmeter reads 12.0V .
As altitude increases, temperature increases.
The stratosphere is the part of the atmosphere that starts in the tropopause and ends in the estratopause. In the troposphere, the air is close to the Earth surface. The air surface can absorb more sunlight energy than the air, so the Earth surface heats the air. As you go higher, the distance to the Earth surface is higher, so the temperature is lower. The troposphere ends in the tropopause, where this trend changes. In the estratopause, there is a lot of ozone, which absorbs the dangerous UV radiation and converts into heat. That heat warms the air. So the air which is close to the estratopause is warm because of the heat released by the ozone reactions. The tropopause is far from the Earth surface and far from the ozone layer, that’s why it is cold. So the tropopause is cold and the estratopause is warm, which means: the air becomes warmer <span>as you rise above the tropopause until you get to the estratopause.</span>
1). From the frame of reference of a passenger on the airplane looking out of his window, the tree appears to be moving, at roughly 300 miles per hour toward the left of the picture.
2). The SI unit best suited to measuring the height of a building is the meter.
3). 'Displacement' is the straight-line distance and direction from the start-point to the end-point, regardless of the path that was followed to get there.
The ball started out in the child's hand, and it ended up 2 meters away from her in the direction of the wall. So the displacement of the ball from the beginning to the end of the story is: 2 meters toward the wall.
To find a general equilibrium point for a spring based on the hook law, it is possible to start from the following premise:
Hook's law is given by:

Where,
k= Spring Constant
Change in Length
F = Force
When there is a Mass we have two force acting at the System:
W= mg
Where W is the force product of the weigth. Then the force net can be defined as,

But we have a system in equilibrium, so

We find the equilibrium for any location when
