The answer is C because you must do all the other things first to get to the that’s part hope that helps
Answer:
6.25 moles of N₂ is produced, and 18.8 moles of Cu and H₂O is produced.
Explanation:
We are given the chemical equation:

And we want to determine the amount of products produced when 12.5 moles of NH₃ is reacted with excess CuO.
Compute using stoichiometry. From the equation, we can see the following stoichiometric ratios:
- The ratio between NH₃ and N₂ is 2:1. (i.e. One mole of N₂ is produced from every two moles of NH₃.)
- The ratio between NH₃ and Cu is 2:3.
- The ratio between NH₃ and H₂O is 2:3. (i.e. Three moles of H₂O or Cu is produced frome every two moles of NH₃.)
Dimensional Analysis:
- The amount of N₂ produced:

- The amount of Cu produced:

- And the amount of H₂O produced:

In conclusion, 6.25 moles of N₂ is produced, and 18.8 moles of Cu and H₂O is produced.
The question is incomplete, the complete question is shown in the image attached
Answer:
A and B
Explanation:
The electrophilic substitution of arenes yields a cation intermediate. The positive charge of the cation is delocalized over the entire ring.
The -CN group directs incoming electrophiles to the ortho/para position. The resonance structures for the chlorination of benzonitrile are shown in the question.
Recall that -CN is an electron withdrawing group. The resonance forms that destablize the carbocation intermediate are those in which the -CN group is directly attached to the carbon atom bearing the positive charge as in structures A and B.
B). light energy is not required to proceed
Explanation:
In the Calvin cycle of photosynthesis, light energy is not required. The Calvin cycle is light independent and it is made up of a series of redox reactions.
- During photosynthesis reactions, green plants manufacture their food using carbon dioxide, sunlight and water.
- During the Calvin cycle aspect, light energy is not required for chemical reactions to take place. The light energy helps to move electrons.
- The cycle is also known as dark reactions.
- It is at this stage that carbon dioxide combines with water to form glucose.
- The reaction is initiated with light energy which produces NADPH and ATP.
- The Calvin cycle follows by using the NADPH and ATP to produce glucose in the dark phase.
Learn more:
ATP brainly.com/question/2953868
Light dependent reactions brainly.com/question/6866300
#learnwithBrainly
Cellular respiration involves breakdown of glucose into carbon dioxide and water in presence of oxygen, releasing energy. ... ATP molecule is converted into ADP molecule, whenever energy is needed for any metabolic reaction or activity. The energy stored in it is released to be used in metabolic reaction.
Hope this helps! So sorry if I'm wrong