Answer:
its easy ask to chrome or search in yt ;)
Answer:
-0.1767°C (Option A)
Explanation:
Let's apply the colligative property of freezing point depression.
ΔT = Kf . m. i
i = Van't Hoff factot (number of ions dissolved). Glucose is non electrolytic so i = 1
m = molality (mol of solute / 1kg of solvent)
We have this data → 0.095 m
Kf is the freezing-point-depression constantm 1.86 °C/m, for water
ΔT = T° frezzing pure solvent - T° freezing solution
(0° - T° freezing solution) = 1.86 °C/m . 0.095 m . 1
T° freezing solution = - 1.86 °C/m . 0.095 m . 1 → -0.1767°C
Water has a density of 1 g/cc. If you have 1 cc of water, then the mass it contains would be 1 g. <span>Density is a physical
property of a substance that represents the mass of that substance per unit
volume. It is a property that can be used to describe a substance. Hope this answers the question. Have a nice day.</span>
A solution with a pH of 6.52 has a hydronium ion concentration of 3.02x10-7 mol/L and a hydroxide ion concentration of 3.31x10-8 mol/L.
The hydronium ion concentration of a solution can be calculated from pH by using
. For a pH of 6.52, hydronium ion concentration is 3.02x10-7 mol/L.
The concentration of hydroxide ions can be determined by identifying the value of pOH. The sum of pOH and pH is equal to 14, which is based on the negative logarithm of the ion-product constant of water. At a pH of 6.52, pOH is equal to 7.48.
The relationship between pOH and hydroxide ion concentration is the same as the relationship between pH and hydronium ion concentration. With this, the hydroxide ion concentration at pOH of 7.48 is
or 3.31x10-8 mol/L.
For more information regarding pH and pOH, please refer to the link brainly.com/question/13557815.
#SPJ4