The solution is as follows:
K = [Partial pressure of isoborneol]/[Partial pressure of borneol] = 0.106
The molar mass of isoborneol/borneol is 154.25 g/mol
Mol isoborneol = 15 g/154.25 = 0.0972 mol
Mol borneol = 7.5 g/154.25 = 0.0486 mol
Use the ICE approach
borneol → isoborneol
I 0.0972 0.0486
C -x +x
E 0.0972 - x 0.0486 + x
Total moles = 0.1458
Using Raoult's Law,
Partial Pressure = Mole fraction*Total Pressure
[Partial pressure of isoborneol] = [(0.0972-x)/0.1458]*P
[Partial pressure of borneol] = [(0.0486+x/0.1458)]*P
0.106 = [(0.0972-x)/0.1458]*P/ [(0.0486+x/0.1458)]*P
Solving for x,
x = 0.0832
Thus,
<em>Mol fraction of borneol = (0.0486+0.0832)/0.1458 = 0.904</em>
<em>Mol fraction of isoborneol = (0.0972-0.0832)/0.1458 = 0.096</em>
Answer : The mass of lithium hypochlorite are, 34.7 grams.
Explanation : Given,
Moles of
= 0.594 g
Molar mass of
= 58.4 g/mol
Expression used :
Now put all the given values in this expression, we get:
Therefore, the mass of lithium hypochlorite are, 34.7 grams.
Answer:
114 kPa
Explanation:
Using Gay-Lussac's law you get the equation
and converting celcius you get the final equation of
. After dividing 85.5 by 27+273(300) you get 0.285 and then you multiply 0.285 by 127+273 (400). You finally get 114 kPa
Number one would be Decades
Water would have a much lower boiling point much like its other hydrides and it would loss its ability to dissolve polar substances plus it couldn't form water columns so no more cohesion between water molecules