The general formula is: Momentum = (mass) x (speed)
I never like to just write a bunch of algebra without explaining it.
But in this particular case, there's really not much to say, and
I think the algebra will pretty well explain itself. I hope so:
Original momentum = (original mass) x (original speed)
New momentum = (2 x original mass) x (2 x original speed)
= (2) x (original mass) x (2) x (original speed)
= (2) x (2) x (original mass) x (original speed)
= (4) x (original mass) x (original speed)
= (4) x (original momentum).
Answer:
2560J
Explanation:
By definition the kinetic energy can be calculated in the following way:
K = (mv²)/2 = 80kg·(8.0m/s)²/2 = 2560 J
The hotter star will be 16 times more luminous - luminosity depends on two things - the size of the star and the temperature of the star. The hotter a star is, the more energy it will give out. This will give rise to greater luminosity.
Answer:
The diameter of wire should be m
Explanation:
Given:
Current density
Current A
From the formula of current density,
Where area of cylindrical wire =
m
For finding the diameter of wire,
m
Therefore, the diameter of wire should be m
Answer:
v = 12.86 km/h
v = 3.6 m/s
Explanation:
Given,
The distance, d = 13.5 km
The time, t = 21/20 h
= 1.05 h
The velocity of a body is defined as the distance traveled by the time taken.
v = d / t
= 13.5 km / 1.05 h
= 12.86 km/h
The conversion of km/h to m/s
1 km/h = 0.28 m/s
12.86 km/h = 12.86 x 0.28 m/s
= 3.6 m/s
Hence, the velocity in m/s is, v = 3.6 m/s