Answer:
The value 
Explanation:
From the question we are told that
The volume blood ejected is 
The velocity of the blood ejected is 
The density of blood is 
The heart beat is 
The average force exerted by the blood on the wall of the aorta is mathematically represented as

=> 
=> 
You knew that this question is ridiculously easy. So, just to
make it harder, you decided not to let us see the picture, so
that we could not "examine the circuit".
The description is talking about a parallel circuit. The other
kind is a series circuit, and that one has no forks in the road.
Answer:
5080.86m
Explanation:
We will divide the problem in parts 1 and 2, and write the equation of accelerated motion with those numbers, taking the upwards direction as positive. For the first part, we have:


We must consider that it's launched from the ground (
) and from rest (
), with an upwards acceleration
that lasts a time t=9.7s.
We calculate then the height achieved in part 1:

And the velocity achieved in part 1:

We do the same for part 2, but now we must consider that the initial height is the one achieved in part 1 (
) and its initial velocity is the one achieved in part 1 (
), now in free fall, which means with a downwards acceleration
. For the data we have it's faster to use the formula
, where d will be the displacement, or difference between maximum height and starting height of part 2, and the final velocity at maximum height we know must be 0m/s, so we have:

Then, to get
, we do:



And we substitute the values:

Answer:
Surface tension in water
Friction between tires and pavement
Dissolution of salt in water
Explanation:
Surface tension in water: It is due to the electrostatic force of attraction (cohesive force) between water molecules.
Friction between tires and pavement: It is due to the attractive force between tires and pavement.
Dissolution of salt in water: The ions of
and
separate due to the strong attraction of water molecules.