
<u>Explanation:</u>
Velocity of B₁ = 4.3m/s
Velocity of B₂ = -4.3m/s
For perfectly elastic collision:, momentum is conserved

where,
m₁ = mass of Ball 1
m₂ = mass of Ball 2
v₁ = initial velocity of Ball 1
v₂ = initial velocity of ball 2
v'₁ = final velocity of ball 1
v'₂ = final velocity of ball 2
The final velocity of the balls after head on elastic collision would be

Substituting the velocities in the equation

If the masses of the ball is known then substitute the value in the above equation to get the final velocity of the ball.
The kinetic theory of gases is a simple, historically significant model of the thermodynamic behavior of gases, with which many principal concepts of thermodynamics were established. The model describes a gas as a large number of identical submicroscopic particles, all of which are in constant, rapid, random motion
Answer:
A) 350 N
B) 58.33 N
C) 35 kg
D) 35 kg
Explanation:
If we use that g = 10 m/s^2, then the acceleration of gravity on the Moon will be 10/6 m/s^2 = 5/3 m/s*2
The weight of the object on Earth is given by:
Weight = mass * g = 35 * 10 = 350 N
The weight of the object on the Moon:
Weight = mass * gmoon = 35 * 5/3 = 58.33 N
The mass of the object on Earth is 35 kg
The mass of the object on the Moon is exactly the same as on the Earth (35 kg) since the mass is a quantity inherent to the object and not to its location.
The frequency of the
scattered photon decreases or it will be lower compare to the frequency of
incident photon. An x-ray photon scatters in one direction after a collision
and some energy is transferred to the electron as it recoils in another
direction resulting to have less energy in the scattered photon. In addition, the
frequencies will also depend on the differences of the angle at which the
scattered photon leaves the collision and this incident is called Compton Effect.