Answer: The coefficient of static friction is 3.85 and The coefficient of kinetic friction is 2.8
Explanation:
in the attachment
Answer:Whenever a moving object experiences friction, some of its kinetic energy is transformed into thermal energy. Mechanical energy is always transformed into thermal energy due to friction. Mechanical energy is always transformed into thermal energy due to friction.
Explanation:
Whenever a moving object experiences friction, some of its kinetic energy is transformed into thermal energy. Mechanical energy is always transformed into thermal energy due to friction. Mechanical energy is always transformed into thermal energy due to friction.
Answer:
138.3 days
Explanation:
Given that a Planet Ayanna has a radius of 6.2 X 10%m and orbits the star named Dayli in 98 days. A new neighboring planet Clayton J-21 has been discovered and has a radius of 7.8 X 10 meters.
The period of time for Clayton J-21 to orbit Dayli can be calculated by using Kepler law.
T^2 is proportional to r^3
That is,
T^2/r^3 = constant
98^2 / 62^3 = T^2 / 78^3
Make T^2 the subject of formula.
T^2 = 98^2 / 62^3 × 78^3
T^2 = 19123.2
T = sqrt ( 19123.2 )
T = 138.2867 days
Therefore, the period of time for Clayton J-21 to orbit Dayli is 138.3 days approximately.
Answer:
Its convergent
Explanation:
There areas where plates move toward each other and collide Also known as compressional pr destructive boundaries.
The electrostatic force between two charges q1 and q2 is given by

where

is the Coulomb's constant

is the distance between the two charges.
In our problem, the two charges are two electrons, so their charges are equal and equal to

By substituting these values, we find the intensity of the force between the two electrons:

This is the magnitude of the force each electron exerts to the other one. The direction is given by the sign of the charges: since the two electrons have same charge, they repel each other, so the force exerted by electron 1 is toward electron 2 and viceversa.