1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
34kurt
3 years ago
10

Photo used to help with the question is below!! Please answer! Will mark BRAINLIEST!

Physics
1 answer:
Kryger [21]3 years ago
6 0

Answer:

false

Explanation: rainbows are caused by reflection

hope this helps :)

You might be interested in
In the high jump, the kinetic energy of an athlete is transformed into gravitational potential energy without the aid of a pole.
Fiesta28 [93]

Answer:

6.0 m/s

Explanation:

According to the law of conservation of energy, the total mechanical energy (potential, PE, + kinetic, KE) of the athlete must be conserved.

Therefore, we can write:

KE_i+PE_i =KE_f+PE_f

or

\frac{1}{2}mu^2+0=\frac{1}{2}mv^2+mgh

where:

m is the mass of the athlete

u is the initial speed of the athlete (at the bottom)

0 is the initial potential energy of the athlete (at the bottom)

v = 0.80 m/s is the final speed of the athlete (at the top)

g=9.8 m/s^2 is the acceleration due to gravity

h = 1.80 m is the final height of the athlete (at the top)

Solving the equation for u, we find the initial speed at which the athlete must jump:

u=\sqrt{v^2+2gh}=\sqrt{0.80^2+2(9.8)(1.80)}=6.0 m/s

4 0
3 years ago
A ball moving at positive 3.0 m per s along a table rolls off a table and lands on the ground 2.0 m away. How high was the table
MA_775_DIABLO [31]

consider the motion along the horizontal direction :

v₀ = initial velocity in horizontal direction as the ball rolls off the table = 3.0 m/s

X = horizontal displacement of the ball = 2.0 m

a = acceleration along the horizontal direction = 0 m/s²

t = time taken to land = ?

using the kinematics equation

X = v₀ t + (0.5) a t²

2.0 = 3.0 t + (0.5) (0) t²

t = 2/3


consider the motion of the ball along the vertical direction

v₀ = initial velocity in vertical direction as the ball rolls off the table = 0 m/s

Y = vertical displacement of the ball = height of the table = h

a = acceleration along the vertical direction = 9.8 m/s²

t = time taken to land = 2/3

using the kinematics equation

Y = v₀ t + (0.5) a t²

h = 0 t + (0.5) (9.8) (2/3)²

h = 2.2 m


C 2.2 m

3 0
3 years ago
True or False<br> further the sun, the longer the shadow
xz_007 [3.2K]

Answer: Yes the further the sun is away the longer the shadow is. At noon,the shadow is the shortest because its straight up above you. If this helps pls mark brainliest!

6 0
3 years ago
Read 2 more answers
What force must the deltoid muscle provide to keep the arm in this position?
ruslelena [56]

Answer:

Deltoid Force, F_{d} = \frac {r_{a}mgsin\alpha_{a}}{r_{d}sin\alpha_{d}}

Additional Information:

Some numerical information are missing from the question. However, I will derive the formula to calculate the force of the deltoid muscle. All you need to do is insert the necessary information and calculate.  

Explanation:

The deltoid muscle is the one keeping the hand arm in position. We have two torques that apply to the rotating of the arm.

1. The torque about the point in the shoulder for the deltoid muscle, T_{Deltoid}

2. The torque of the arm, T_{arm}  

Assuming the arm is just being stretched and there is no rotation going on,

                        T_{Deltoid} = 0

                       T_{arm} = 0

       ⇒           T_{Deltoid} = T_{arm}

                  r_{d}F_{d}sin\alpha_{d} = r_{a}F_{a}sin\alpha_{a}

Where,

r_{d} is radius of the deltoid

F_{d} is the force of the deltiod

\alpha_{d} is the angle of the deltiod

r_{a} is the radius of the arm

F_{a} is the force of the arm , F_{a} = mg  which is the mass of the arm and acceleration due to gravity

\alpha_{a} is the angle of the arm

The force of the deltoid muscle is,

                                 F_{d} = \frac {r_{a}F_{a}sin\alpha_{a}}{r_{d}sin\alpha_{d}}

but F_{a} = mg ,

                ∴            F_{d} = \frac {r_{a}mgsin\alpha_{a}}{r_{d}sin\alpha_{d}}

7 0
3 years ago
Substances have more kinetic energy in the ______ state than in the ______ state.
USPshnik [31]
Liquids state than in the solid state because when it is solid the particals cant move as much than in the liquid state 
4 0
3 years ago
Read 2 more answers
Other questions:
  • 8. A car travels from Town A to Town B on one road at different speeds and stops at red lights. If you know the distance between
    14·1 answer
  • On a planet whose radius is 1.1 x 10^7 m, the acceleration due to gravity is 41 m/s^2. What is the mass of the planet (in kg)?
    10·1 answer
  • A 1000kg automobile enters a freeway on-ramp at 20 m/s accelerates uniformly up to 40 m/s in a time of 10 seconds. How far does
    8·2 answers
  • The acceleration due to gravity at the surface of a planet depends on the planet's mass and size; therefore other planets will h
    15·1 answer
  • What is the atomic number of a sodium atom that has 11 protons and 12 neutrons
    6·1 answer
  • A bullet is fired from a rifle pointed 45 degrees above horizontal. The bullet leaves the muzzle traveling 1400 m/s. How many se
    7·1 answer
  • Edward travels 150 kilometers due west and then 200 kilometers in a direction 60° north of west. What is his displacement in the
    12·1 answer
  • In which of the basic regions of the galaxy is the sun located?
    12·1 answer
  • How do the lens of a light microscope work
    13·1 answer
  • A clarinetist, setting out for a performance, grabs his 3.070 kg clarinet case (including the clarinet) from the top of the pian
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!