Answer:
Measuring with a ruler and using final volume minus initial volume
Explanation:
You can measure the volume of a geometric object by measuring its sides with a ruler and calculating the volume according to the corresponding formula for each object. For example, for a rectangular prism it would be

You can also measure the volume of an object by measuring how much water it displaces. To do this you have to fill a measuring cylinder with enough water for the object to be completely submerged and take note of the volume. Then, add the object and note again the volume of the water+object. The difference between both is the volume of the object.

The advantage of the second method is that it can be used for objects with irregular shapes as long as they do not float.
Correct question
The density of liquid mercury is 13.6 g/mL. What is its density in units of lb/in3? (2.5 cm = 1 in., 2.205 lbs= 1 kg., 1000 g =1 kg, 1 mL = 1 cm³)
Answer:

Explanation:
Given that;-
The density = 13.6 g/mL
Also, 1 kg = 2.205 lb
1 kg = 1000 g
So, 1000 g = 2.205 lb
1 g = 0.002205 lb
Also,
1 in = 2.54 cm
1 in³ = 16.39 cm³
1 cm³ = 1 mL
So, 1 in³ = 16.39 mL
1 mL = 0.061 in³
The expression for the calculation of density is shown below as:-

Thus,

Answer:
dude im sorry for your loss best of luck to you and your answer search
Explanation:
Answer:
i think that the answer is solid liquid and gas.
Explanation:
Answer:
Composition of the mixture:
%
%
Composition of the vapor mixture:
%
%
Explanation:
If the ideal solution model is assumed, and the vapor phase is modeled as an ideal gas, the vapor pressure of a binary mixture with
and
molar fractions can be calculated as:

Where
and
are the vapor pressures of the pure compounds. A substance boils when its vapor pressure is equal to the pressure under it is; so it boils when
. When the pressure is 0.60 atm, the vapor pressure has to be the same if the mixture is boiling, so:

With the same assumptions, the vapor mixture may obey to the equation:
, where P is the total pressure and y is the fraction in the vapor phase, so:
%
The fractions of B can be calculated according to the fact that the sum of the molar fractions is equal to 1.