Answer:
In the given chemical reaction:
Species Oxidized: I⁻
Species Reduced: Fe³⁺
Oxidizing agent: Fe³⁺
Reducing agent: I⁻
As the reaction proceeds, electrons are transferred from I⁻ to Fe³⁺
Explanation:
Redox reaction is a chemical reaction involving the simultaneous movement of electrons thereby causing oxidation of one species and reduction of the other species.
The chemical species that <u><em>gets reduced by gaining electrons </em></u><u>is called an </u><u><em>oxidizing agent</em></u>. Whereas, the chemical species that <u><em>gets oxidized by losing electrons </em></u><u>is called a </u><u><em>reducing agent</em></u><u>.</u>
Given redox reaction: 2Fe³⁺ + 2I⁻ → 2Fe²⁺ + I₂
<u>Oxidation half-reaction</u>: 2 I⁻ + → I₂ + 2 e⁻ ....(1)
<u>Reduction half-reaction</u>: [ Fe³⁺ + 1 e⁻ → Fe²⁺ ] × 2
⇒ 2 Fe³⁺ + 2 e⁻ → 2 Fe²⁺ ....(2)
In the given redox reaction, <u>Fe³⁺ (oxidation state +3) accepts electrons and gets reduced to Fe²⁺ (oxidation state +2) and I⁻ (oxidation state -1) loses electrons and gets oxidized to I₂ (oxidation state 0).</u>
<u>Therefore, Fe³⁺ is the oxidizing agent and I⁻ is the reducing agent and the electrons are transferred from I⁻ to Fe³⁺.</u>
<u>Answer:</u> The experimental van't Hoff factor is 1.21
<u>Explanation:</u>
The expression for the depression in freezing point is given as:

where,
i = van't Hoff factor = ?
= depression in freezing point = 0.225°C
= Cryoscopic constant = 1.86°C/m
m = molality of the solution = 0.100 m
Putting values in above equation, we get:

Hence, the experimental van't Hoff factor is 1.21
Answer:

Explanation:
mass of Fe = 55.85 g
Molar mass of Fe = 55.85 g/mol
<u>Moles of Fe = 55.85 / 55.85 = 1</u>
mass of Cl = 106.5 g
Molar mass of Cl = 35.5 g/mol
Moles of Cl = 106.5 / 35.5 = 3
Taking the simplest ratio for Fe and Cl as:
1 : 3
The empirical formula is = 