Answer:
Orbital Time Period is 24 years
Explanation:
This can be explained by the definition of time period.
Time period can be defined as the time taken by an object to complete one cycle, here, time taken to complete one revolution.
Also, we know that an extra solar planet which is also called as an exo planet is that planet which is outside our solar system and orbits any star other than our sun. The system in consideration is extra solar system with a single planet.
Therefore, the time taken by the parent star to move about its mass center is the orbital time period that is 24 years.
Answer:
Plzzzzzzzzzzzzzzzz brainliest
Explanation:
In static friction, the frictional force resists force that is applied to an object, and the object remains at rest until the force of static friction is overcome. In kinetic friction, the frictional force resists the motion of an object. ... The frictional force itself is directed oppositely to the motion of the object.
<span>10 times as much. Since F=m*a, and a is constant, the only thing that affects force is the mass.
In response to the below answer, the acceleration due to gravity does not change. The force due to gravity definitely DOES change depending on the mass of the object. Since the force is what the problem asks for, the answer is 10</span>
A) The temperature will increase.
Kinetic energy is the intrinsic energy carried by an object in motion.
Explanation:
Increasing the kinetic energy of the molecules means that molecules rapidly. This causes an increased rate of collision between the molecules and between the molecules and the walls of the container. Most of these collisions are inelastic meaning that some of the energy in the collisions is lost as heat energy to the environment. This means the system becomes hotter.
Learn More:
To understand more on the relations between kinetic energy and temperatures check out;
brainly.com/question/11800512
brainly.com/question/11296583
#LearnWithBrainly
-- Energy is never created or destroyed.
-- No energy is added to the pendulum during its swing.
-- If we ignore air resistance and friction, then no energy is lost
from the pendulum during its swing.
-- Therefore the total energy of the pendulum must be constant.
-- Any potential energy lost at any point in the swing
must show up as kinetic energy. If it had 484J at the top,
then it'll have 484J at the bottom.