Answer : The value of equilibrium constant (Kc) is, 0.0154
Explanation :
The given chemical reaction is:

Initial conc.
0 0
At eqm.
x x
As we are given:
Concentration of
at equilibrium = 
That means,

The expression for equilibrium constant is:
![K_c=\frac{[SO_2][Cl_2]}{[SO_2Cl_2]}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7B%5BSO_2%5D%5BCl_2%5D%7D%7B%5BSO_2Cl_2%5D%7D)
Now put all the given values in this expression, we get:



Thus, the value of equilibrium constant (Kc) is, 0.0154
The mass of piece of sterling silver jewelry is 33.24 g. It contains 92.5% silver Ag by mass. Since, sterling silver is an alloy of Ag-Cu thus, percentage of Cu will be:
% Cu=100-92.5=7.5%
Thus, mass of copper will be:

Molar mass of Cu is 63.546 g/mol, thus, number of moles of Cu can be calculated as follows:

Here, m is mass and M is molar mass.
Putting the values,

Now, in 1 mole of Cu there are
thus, in 0.03923 mol, number of Cu atoms will be:

Thus, number of atoms of Cu will be
.
Answer:
Final concentration of NaOH = 0.75 M
Explanation:
For
:-
Given mass = 90.0 g
Molar mass of NaOH = 39.997 g/mol
The formula for the calculation of moles is shown below:
Thus,

Molarity is defined as the number of moles present in one liter of the solution. It is basically the ratio of the moles of the solute to the liters of the solution.
The expression for the molarity, according to its definition is shown below as:
Where, Volume must be in Liter.
It is denoted by M.
Given, Volume = 3.00 L
So,
<u>Final concentration of NaOH = 0.75 M</u>
Having resources? i guess...
maybe it is critical thinking?